Wolves de Chicago

GP: 48 | W: 20 | L: 27 | OTL: 1 | P: 41
GF: 515 | GA: 525 | PP%: 48.29% | PK%: 57.68%
GM : Elowan Gingras Osterstock | Morale : 40 | Team Overall : 60
Next Games #715 vs Americans de Rochester
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Jesse PuljujarviX100.007544898180628061446059652557576440620
2Tanner FritzXX100.007569896969798462786258645544446440620
3Nicolas RoyX100.008178876878838960755461675844446640620
4Patrick BrownXX100.008077867277798559745262665946466540620
5Gage QuinneyXX100.007873916273707264805963686050506540610
6Peyton KrebsX100.005651737269799569717254555730309540610
7Keegan KolesarX100.007782666582798559505162655945456340600
8Valentin ZykovX100.007344977180557169326058522546466240590
9Samuel FagemoXX100.005147947072779564625264516740409540590
10William CarrierX100.008478997678596345503844674256575440560
11Tyrell GoulbourneX100.006370466470778453504754565144445640550
12Reid DukeXX100.007370796570525255694956615344445840550
13Haydn FleuryX100.007845967282607658254547677553535940620
14Dylan Coghlan (R)X100.007670896570798459254954645144446240610
15Jake BischoffX100.007671896971738048253940623848485440590
16Zach Whitecloud (R)X100.007876846276667150254541633944445440580
Scratches
1Brett LernoutX89.398180837480596346253341663955555340600
TEAM AVERAGE99.35746685697570785851515462504647644060
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Garret Sparks100.00626159836657556569629547476240610
2Oscar Dansk100.00606176796062596662613044446140600
Scratches
TEAM AVERAGE100.0061616881636057666662634646624061
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Rocky Thompson50647168504758CAN411500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Gage QuinneyWolves de Chicago (VGK)C/LW4814241183-19202062713017921047.18%4978616.3943145781139000003376.09%46120670244.65002201230
2Peyton KrebsWolves de Chicago (VGK)LW4846104150-1180039241506311130.67%3081016.8911263731112000001063.51%7412228063.7000000402
3Tanner FritzWolves de Chicago (VGK)C/RW488363146-12473557531986612641.92%5283917.50201737381090002355160.00%50135390133.4811412372
4Valentin ZykovWolves de Chicago (VGK)LW48426110336002630140367030.00%1050310.4900000000003033.33%279618074.0900000162
5Jesse PuljujarviWolves de Chicago (VGK)RW28326395-31203023106338430.19%1748317.278192723720113413141.67%2410024043.9301000121
6Reid DukeWolves de Chicago (VGK)C/RW483945843630103944117368233.33%3851010.6300000000000059.71%4795838043.2900101013
7Nicolas RoyWolves de Chicago (VGK)C36334174-31971254648103317232.04%2959716.616111714620112671061.78%5734725032.48005911001
8Zach WhitecloudWolves de Chicago (VGK)D48250529432543427748452.60%4551210.670000000019100.00%01836002.0300203011
9Keegan KolesarWolves de Chicago (VGK)RW3227224910236120272485235831.76%1433710.54000000001231159.38%324423022.91009411000
10Jake BischoffWolves de Chicago (VGK)D4824345-1015537438834472.27%6366713.91011418000223000.00%01467001.3501000001
11Dylan CoghlanWolves de Chicago (VGK)D30162844-780313770323522.86%4959519.8474111956101172000.00%01456001.4800000111
12Samuel FagemoWolves de Chicago (VGK)LW/RW4840141-320102788396445.45%252465.1300000000001040.00%105712043.3300000012
13Brett LernoutWolves de Chicago (VGK)D4313637-2824617060547632511.32%4868015.83044845011049000.00%0958001.090071215000
14Patrick BrownWolves de Chicago (VGK)C/RW118816-725519253481423.53%926724.3034711371014580058.31%295208021.2000010001
15Haydn FleuryWolves de Chicago (VGK)D13178-812020212710113.70%3836227.91156641000260000.00%0327000.4400000000
16Ryan MurphyGolden Knights de VegasD8033-910012912540.00%1620926.15000427000035000.00%0110000.2900000000
17William CarrierWolves de Chicago (VGK)LW25011020977320.00%4722.89000280000110054.55%2253000.2800000000
18Tyrell GoulbourneWolves de Chicago (VGK)LW48000-200312000.00%0180.390001100003000.00%110000.0000000000
Team Total or Average6585146171131-319855155705831681578108630.58%536850112.92991052042427342351849219659.89%16338645390692.6613302943222217
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Oscar DanskWolves de Chicago (VGK)177700.8236.508210089504301000.00001226000
2Garret SparksWolves de Chicago (VGK)144410.8176.997040082447292210.0000140000
Team Total or Average31111110.8206.73152500171951593210.00002626000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Brett LernoutWolves de Chicago (VGK)D241995-09-23No213 Lbs6 ft4NoNoNo1Pro & Farm653,333$0$0$NoLink
Dylan CoghlanWolves de Chicago (VGK)D211998-02-19Yes189 Lbs6 ft2NoNoNo3Pro & Farm716,666$0$0$No716,666$716,666$Link
Gage QuinneyWolves de Chicago (VGK)C/LW241995-07-29No201 Lbs6 ft0NoNoNo2Pro & Farm715,000$0$0$No715,000$Link
Garret SparksWolves de Chicago (VGK)G261993-06-28No210 Lbs6 ft3NoNoNo1Pro & Farm675,000$0$0$NoLink
Haydn FleuryWolves de Chicago (VGK)D231996-07-08No221 Lbs6 ft3NoNoNo1Pro & Farm863,333$0$0$NoLink
Jake BischoffWolves de Chicago (VGK)D251994-07-25No194 Lbs6 ft1NoNoNo1Pro & Farm833,750$0$0$NoLink
Jesse PuljujarviWolves de Chicago (VGK)RW211998-05-07No211 Lbs6 ft4NoNoNo1Pro & Farm925,000$0$0$NoLink
Keegan KolesarWolves de Chicago (VGK)RW221997-04-08No227 Lbs6 ft2NoNoNo2Pro & Farm702,500$0$0$No702,500$Link
Nicolas RoyWolves de Chicago (VGK)C221997-02-05No208 Lbs6 ft4NoNoNo2Pro & Farm720,000$0$0$No720,000$Link
Oscar DanskWolves de Chicago (VGK)G251994-02-28No195 Lbs6 ft3NoNoNo1Pro & Farm650,000$0$0$NoLink
Patrick BrownWolves de Chicago (VGK)C/RW271992-05-29No210 Lbs6 ft1NoNoNo1Pro & Farm650,000$0$0$NoLink
Peyton KrebsWolves de Chicago (VGK)LW182001-01-26 16:15:49No187 Lbs6 ft5NoNoNo1Pro & Farm0$0$No
Reid DukeWolves de Chicago (VGK)C/RW231996-01-28No191 Lbs6 ft0NoNoNo2Pro & Farm770,000$0$0$No770,000$Link
Samuel FagemoWolves de Chicago (VGK)LW/RW192000-03-14 16:24:05No187 Lbs6 ft5NoNoNo1Pro & Farm0$0$No
Tanner FritzWolves de Chicago (VGK)C/RW281991-08-20No192 Lbs5 ft11NoNoNo1Pro & Farm650,000$0$0$NoLink
Tyrell GoulbourneWolves de Chicago (VGK)LW251994-01-25No195 Lbs5 ft11NoNoNo1Pro & Farm715,000$0$0$NoLink
Valentin ZykovWolves de Chicago (VGK)LW241995-05-14No224 Lbs6 ft1NoNoNo2Pro & Farm675,000$0$0$No675,000$Link
William CarrierWolves de Chicago (VGK)LW251994-12-20No212 Lbs6 ft2NoNoNo2Pro & Farm725,000$0$0$No725,000$Link
Zach WhitecloudWolves de Chicago (VGK)D231996-11-27Yes209 Lbs6 ft2NoNoNo2Pro & Farm925,000$0$0$No925,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1923.42204 Lbs6 ft21.47661,294$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Gage QuinneyPatrick BrownJesse Puljujarvi40122
2Peyton KrebsNicolas RoyTanner Fritz30122
3Valentin ZykovReid DukeKeegan Kolesar20122
4Samuel FagemoPatrick BrownJesse Puljujarvi10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Haydn FleuryDylan Coghlan40122
2Jake BischoffZach Whitecloud30122
3Haydn FleuryDylan Coghlan20122
4Jake BischoffZach Whitecloud10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Gage QuinneyPatrick BrownJesse Puljujarvi60122
2Peyton KrebsNicolas RoyTanner Fritz40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Haydn FleuryDylan Coghlan60122
2Jake BischoffZach Whitecloud40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Patrick BrownJesse Puljujarvi60122
2Nicolas RoyTanner Fritz40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Haydn FleuryDylan Coghlan60122
2Jake BischoffZach Whitecloud40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Patrick Brown60122Haydn FleuryDylan Coghlan60122
2Jesse Puljujarvi40122Jake BischoffZach Whitecloud40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Patrick BrownJesse Puljujarvi60122
2Nicolas RoyTanner Fritz40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Haydn FleuryDylan Coghlan60122
2Jake BischoffZach Whitecloud40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Gage QuinneyPatrick BrownJesse PuljujarviHaydn FleuryDylan Coghlan
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Gage QuinneyPatrick BrownJesse PuljujarviHaydn FleuryDylan Coghlan
Extra Forwards
Normal PowerPlayPenalty Kill
William Carrier, Tyrell Goulbourne, Keegan KolesarWilliam Carrier, Tyrell GoulbourneKeegan Kolesar
Extra Defensemen
Normal PowerPlayPenalty Kill
Haydn Fleury, Dylan Coghlan, Jake BischoffHaydn FleuryDylan Coghlan, Jake Bischoff
Penalty Shots
Patrick Brown, Jesse Puljujarvi, Nicolas Roy, Tanner Fritz, Gage Quinney
Goalie
#1 : Garret Sparks, #2 : Oscar Dansk
Custom OT Lines Forwards
Patrick Brown, Jesse Puljujarvi, Nicolas Roy, Tanner Fritz, Gage Quinney, Peyton Krebs, Peyton Krebs, Keegan Kolesar, Valentin Zykov, Samuel Fagemo, William Carrier
Custom OT Lines Defensemen
Haydn Fleury, Dylan Coghlan, Jake Bischoff, Zach Whitecloud,


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals de Milwaukee202000001121-1010100000512-71010000069-300.0001121320022815712915963055054548927902711654.55%16756.25%040575853.43%36079245.45%663141646.82%10977761142332647318
2Barracuda de San José4310000044281622000000191362110000025151060.7504476120002281571291140630550545412141897115746.67%22863.64%140575853.43%36079245.45%663141646.82%10977761142332647318
3Bears de Hershey10100000920-110000000000010100000920-1100.00091423002281571291436305505454361230107228.57%5260.00%040575853.43%36079245.45%663141646.82%10977761142332647318
4Bruins de Providence 1010000024-21010000024-20000000000000.000224002281571291346305505454322021207114.29%8362.50%040575853.43%36079245.45%663141646.82%10977761142332647318
5Comets d'Utica202000001541-2610100000615-910100000926-1700.00015233800228157129178630550545473363916800.00%7528.57%040575853.43%36079245.45%663141646.82%10977761142332647318
6Condors de Bakersfield1010000046-21010000046-20000000000000.0004711102281571291356305505454311718187342.86%4250.00%040575853.43%36079245.45%663141646.82%10977761142332647318
7Devils de Binghamton10100000810-20000000000010100000810-200.00081422002281571291546305505454451629136350.00%2150.00%040575853.43%36079245.45%663141646.82%10977761142332647318
8Eagles du Colorado202000001439-25202000001439-250000000000000.000142438002281571291766305505454722365236466.67%17947.06%040575853.43%36079245.45%663141646.82%10977761142332647318
9Griffins de Grand Rapids101000001314-100000000000101000001314-100.000131831002281571291426305505454371461011100.00%30100.00%040575853.43%36079245.45%663141646.82%10977761142332647318
10Gulls de San Diego303000002042-22202000001221-910100000821-1300.0002033530022815712919663055054549037473010550.00%15660.00%140575853.43%36079245.45%663141646.82%10977761142332647318
11Heat de Stockton220000002181322000000218130000000000041.00021365700228157129157630550545453213927300.00%12283.33%040575853.43%36079245.45%663141646.82%10977761142332647318
12IceHogs de Rockford33000000401129220000002662011000000145961.000406010000228157129113163055054547028324117952.94%6183.33%040575853.43%36079245.45%663141646.82%10977761142332647318
13Marlies de Toronto211000003435-11100000026131310100000822-1420.50034498300228157129176630550545478254818181266.67%9811.11%040575853.43%36079245.45%663141646.82%10977761142332647318
14Monsters de Cleveland220000005515401100000027720110000002882041.0005578133002281571291626305505454693964171010100.00%7357.14%040575853.43%36079245.45%663141646.82%10977761142332647318
15Moose du Manitoba1010000078-11010000078-10000000000000.0007916002281571291326305505454283108000.00%50100.00%040575853.43%36079245.45%663141646.82%10977761142332647318
16Penguins de Wilkes-Barre/Scranton220000003819191100000020119110000001881041.000385492002281571291796305505454842946229555.56%8362.50%040575853.43%36079245.45%663141646.82%10977761142332647318
17Phantoms de Lehigh Valley202000001321-810100000811-310100000510-500.0001318310022815712918763055054547835502410330.00%10640.00%040575853.43%36079245.45%663141646.82%10977761142332647318
18Rampage de San Antonio211000003033-3101000001125-14110000001981120.5003045750022815712915863055054547628116215360.00%8450.00%040575853.43%36079245.45%663141646.82%10977761142332647318
19Reign d'Ontario31100010464061100000021129201000102528-340.667467111700228157129110663055054541395943439555.56%14564.29%040575853.43%36079245.45%663141646.82%10977761142332647318
20Roadrunners de Tucson302001001830-12201001001421-71010000049-510.1671827450022815712911056305505454112361094316637.50%23865.22%040575853.43%36079245.45%663141646.82%10977761142332647318
21Rocket de Laval10100000720-1310100000720-130000000000000.0007815002281571291346305505454371323124125.00%4325.00%040575853.43%36079245.45%663141646.82%10977761142332647318
22Senators de Belleville10100000311-810100000311-80000000000000.000358002281571291296305505454431111274125.00%3233.33%040575853.43%36079245.45%663141646.82%10977761142332647318
23Sound Tigers de Bridgeport11000000945000000000001100000094521.0009152400228157129134630550545443929122150.00%7271.43%040575853.43%36079245.45%663141646.82%10977761142332647318
24Stars du Texas211000001410400000000000211000001410420.500142438002281571291796305505454794339349555.56%12466.67%040575853.43%36079245.45%663141646.82%10977761142332647318
Total48192700110515525-1027111500100281292-1121812000102342331410.427515788130310228157129117266305505454172266511586282059948.29%24110257.68%240575853.43%36079245.45%663141646.82%10977761142332647318
26Wild de l'Iowa10100000728-2110100000728-210000000000000.00071118002281571291386305505454361727136350.00%660.00%040575853.43%36079245.45%663141646.82%10977761142332647318
27Wolfpack de Hartford2200000033726110000002112011000000126641.000334679002281571291626305505454712638285360.00%8275.00%040575853.43%36079245.45%663141646.82%10977761142332647318
_Since Last GM Reset48192700110515525-1027111500100281292-1121812000102342331410.427515788130310228157129117266305505454172266511586282059948.29%24110257.68%240575853.43%36079245.45%663141646.82%10977761142332647318
_Vs Conference31111800110291345-541971100100167214-47124700010124131-7250.4032914677581022815712911090630550545410694167634151225645.90%1676759.88%240575853.43%36079245.45%663141646.82%10977761142332647318
_Vs Division1861000110168195-2711550010097961715000107199-28150.4171682734411022815712916176305505454619247384248682638.24%973662.89%240575853.43%36079245.45%663141646.82%10977761142332647318

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4841W3515788130317261722665115862810
All Games
GPWLOTWOTL SOWSOLGFGA
4819270110515525
Home Games
GPWLOTWOTL SOWSOLGFGA
2711150100281292
Visitor Games
GPWLOTWOTL SOWSOLGFGA
218120010234233
Last 10 Games
WLOTWOTL SOWSOL
460000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2059948.29%24110257.68%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
63055054542281571291
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
40575853.43%36079245.45%663141646.82%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
10977761142332647318


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-08-164Barracuda de San José6Wolves de Chicago7WBoxScore
3 - 2019-08-1817Wolves de Chicago5Barracuda de San José8LBoxScore
7 - 2019-08-2242Bruins de Providence 4Wolves de Chicago2LBoxScore
9 - 2019-08-2447Wolves de Chicago4Roadrunners de Tucson9LBoxScore
11 - 2019-08-2674Heat de Stockton3Wolves de Chicago6WBoxScore
12 - 2019-08-2775Wolves de Chicago7Reign d'Ontario11LBoxScore
14 - 2019-08-2990Admirals de Milwaukee12Wolves de Chicago5LBoxScore
16 - 2019-08-31105Senators de Belleville11Wolves de Chicago3LBoxScore
18 - 2019-09-02119Wolves de Chicago18Penguins de Wilkes-Barre/Scranton8WBoxScore
20 - 2019-09-04130Wolves de Chicago5Phantoms de Lehigh Valley10LBoxScore
21 - 2019-09-05136Wolves de Chicago14IceHogs de Rockford5WBoxScore
24 - 2019-09-08160Eagles du Colorado12Wolves de Chicago4LBoxScore
26 - 2019-09-10176Gulls de San Diego8Wolves de Chicago7LBoxScore
30 - 2019-09-14195Rocket de Laval20Wolves de Chicago7LBoxScore
32 - 2019-09-16217Moose du Manitoba8Wolves de Chicago7LBoxScore
35 - 2019-09-19225Wolves de Chicago28Monsters de Cleveland8WBoxScore
37 - 2019-09-21247Wolves de Chicago8Marlies de Toronto22LBoxScore
39 - 2019-09-23262Wolves de Chicago9Bears de Hershey20LBoxScore
40 - 2019-09-24266Wolves de Chicago13Griffins de Grand Rapids14LBoxScore
43 - 2019-09-27285IceHogs de Rockford5Wolves de Chicago18WBoxScore
46 - 2019-09-30304Wolves de Chicago18Reign d'Ontario17WXXBoxScore
47 - 2019-10-01315Heat de Stockton5Wolves de Chicago15WBoxScore
49 - 2019-10-03330Marlies de Toronto13Wolves de Chicago26WBoxScore
51 - 2019-10-05345Barracuda de San José7Wolves de Chicago12WBoxScore
53 - 2019-10-07359Condors de Bakersfield6Wolves de Chicago4LBoxScore
55 - 2019-10-09367Wolves de Chicago4Stars du Texas5LBoxScore
57 - 2019-10-11383Wolves de Chicago6Admirals de Milwaukee9LBoxScore
59 - 2019-10-13401Roadrunners de Tucson8Wolves de Chicago7LXBoxScore
62 - 2019-10-16423Wolves de Chicago12Wolfpack de Hartford6WBoxScore
63 - 2019-10-17428Wolves de Chicago8Devils de Binghamton10LBoxScore
65 - 2019-10-19444Wolves de Chicago9Sound Tigers de Bridgeport4WBoxScore
68 - 2019-10-22466Wolfpack de Hartford1Wolves de Chicago21WBoxScore
70 - 2019-10-24482IceHogs de Rockford1Wolves de Chicago8WBoxScore
72 - 2019-10-26496Wolves de Chicago19Rampage de San Antonio8WBoxScore
73 - 2019-10-27500Wolves de Chicago10Stars du Texas5WBoxScore
75 - 2019-10-29517Comets d'Utica15Wolves de Chicago6LBoxScore
77 - 2019-10-31533Wild de l'Iowa28Wolves de Chicago7LBoxScore
79 - 2019-11-02546Wolves de Chicago9Comets d'Utica26LBoxScore
82 - 2019-11-05568Wolves de Chicago20Barracuda de San José7WBoxScore
83 - 2019-11-06580Eagles du Colorado27Wolves de Chicago10LBoxScore
87 - 2019-11-10582Wolves de Chicago8Gulls de San Diego21LBoxScore
88 - 2019-11-11601Roadrunners de Tucson13Wolves de Chicago7LBoxScore
91 - 2019-11-14624Gulls de San Diego13Wolves de Chicago5LBoxScore
93 - 2019-11-16637Phantoms de Lehigh Valley11Wolves de Chicago8LBoxScore
95 - 2019-11-18652Rampage de San Antonio25Wolves de Chicago11LBoxScore
98 - 2019-11-21673Penguins de Wilkes-Barre/Scranton11Wolves de Chicago20WBoxScore
100 - 2019-11-23688Reign d'Ontario12Wolves de Chicago21WBoxScore
102 - 2019-11-25701Monsters de Cleveland7Wolves de Chicago27WBoxScore
105 - 2019-11-28715Wolves de Chicago-Americans de Rochester-
107 - 2019-11-30735Wolves de Chicago-Senators de Belleville-
109 - 2019-12-02748Wolves de Chicago-Rocket de Laval-
112 - 2019-12-05761Wolves de Chicago-Bruins de Providence -
122 - 2019-12-15786Wolves de Chicago-Checkers de Charlotte-
123 - 2019-12-16800Wolves de Chicago-Admirals de Milwaukee-
126 - 2019-12-19822Wolves de Chicago-Crunch de Syracuse-
128 - 2019-12-21831Wolves de Chicago-Thunderbirds de Springfield-
130 - 2019-12-23852Checkers de Charlotte-Wolves de Chicago-
133 - 2019-12-26871Wolves de Chicago-Wild de l'Iowa-
135 - 2019-12-28890Rampage de San Antonio-Wolves de Chicago-
137 - 2019-12-30905Sound Tigers de Bridgeport-Wolves de Chicago-
139 - 2020-01-01919Bears de Hershey-Wolves de Chicago-
142 - 2020-01-04939Crunch de Syracuse-Wolves de Chicago-
144 - 2020-01-06958Thunderbirds de Springfield-Wolves de Chicago-
145 - 2020-01-07959Wolves de Chicago-Gulls de San Diego-
148 - 2020-01-10983Condors de Bakersfield-Wolves de Chicago-
Trade Deadline --- Trades can’t be done after this day is simulated!
150 - 2020-01-12998Americans de Rochester-Wolves de Chicago-
152 - 2020-01-141016Reign d'Ontario-Wolves de Chicago-
154 - 2020-01-161027Devils de Binghamton-Wolves de Chicago-
157 - 2020-01-191048Wolves de Chicago-Moose du Manitoba-
159 - 2020-01-211060Wolves de Chicago-Heat de Stockton-
160 - 2020-01-221067Wolves de Chicago-Condors de Bakersfield-
163 - 2020-01-251087Wolves de Chicago-Wild de l'Iowa-
166 - 2020-01-281111Wolves de Chicago-Eagles du Colorado-
168 - 2020-01-301130Stars du Texas-Wolves de Chicago-
169 - 2020-01-311133Wolves de Chicago-Roadrunners de Tucson-
172 - 2020-02-031163Griffins de Grand Rapids-Wolves de Chicago-
174 - 2020-02-051175Comets d'Utica-Wolves de Chicago-
176 - 2020-02-071190Roadrunners de Tucson-Wolves de Chicago-
180 - 2020-02-111223Wolves de Chicago-Moose du Manitoba-
182 - 2020-02-131232Wolves de Chicago-Condors de Bakersfield-
184 - 2020-02-151244Wolves de Chicago-Heat de Stockton-
186 - 2020-02-171271Wolves de Chicago-Comets d'Utica-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
14 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 1,256,458$ 1,256,458$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 82 6,755$ 553,910$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
148192700110515525-1027111500100281292-112181200010234233141515788130310228157129117266305505454172266511586282059948.29%24110257.68%240575853.43%36079245.45%663141646.82%10977761142332647318
Total Regular Season48192700110515525-1027111500100281292-112181200010234233141515788130310228157129117266305505454172266511586282059948.29%24110257.68%240575853.43%36079245.45%663141646.82%10977761142332647318