Marlies de Toronto

GP: 7 | W: 5 | L: 2 | OTL: 0 | P: 10
GF: 63 | GA: 49 | PP%: 47.92% | PK%: 70.59%
GM : Simon Laporte | Morale : 40 | Team Overall : 63
Next Games #97 vs Bears de Hershey
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Matt MoulsonX100.007674806974788170506367756376776940670
2Cal O'ReillyX96.007568926968838770807458715564646840670
3Patrik BerglundXX99.007645917381656066775959824576796740660
4Adam CracknellX100.008383826983747767506266736360616940660
5Peter HollandX100.007676777276798269806565716264646840660
6Drew StaffordXX100.007344897579637566386259676281836540650
7Lee StempniakX99.007570867670545269506463756082846740650
8Chris KunitzXX100.008055877172548662335959676686946540640
9Jeremy BraccoX100.007264927364767869507460655747476740640
10Frederik GauthierX100.007946947088528559796356722560606540630
11Victor Olofsson (R)XX100.007263936563757768506567646444446840620
12Morgan Geekie (R)XX100.007467906267828762785962645944446540610
13Niklas KronwallX97.007643857470809673256549735382886540700
14Ben HarpurX99.008299707088747358254847882559596240680
15Adam McQuaidX100.008970767282686256254848872571756240680
16David SchlemkoX100.008144927269806071255047857570716440680
17Ryan SproulX100.008278927378758055254649664746466040630
18Luca SbisaX100.008376997776454644252839703771735240600
Scratches
1Trevor MooreXX100.006741976661548760256958692546466540600
2Tyler GaudetX100.007877806877727659745856655345456240600
3Adam BrooksX100.007063866363727562785764626144446440590
4Pierre Engvall (R)XX100.007574765874687158504962635944446240570
5Mason MarchmentX100.007377625977616260505660635744446140570
6Aaron Luchuk (R)X100.007666996766575854684954635144445840560
TEAM AVERAGE99.58776586697468746350585771526062644063
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Craig Anderson97.00678483736569476871677875776740670
2Cam Ward100.00646869747256446463647377806240630
Scratches
1Kasimir Kaskisuo100.00515974784857505655543044445440550
TEAM AVERAGE99.0061707575626147636362606567614062
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Sheldon Keefe37797575535663CAN371500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Adam CracknellMarlies de Toronto (TOR)RW7131124154401343072043.33%410915.663710826000001071.43%7137024.3800233111
2Drew StaffordMarlies de Toronto (TOR)LW/RW710919120653261331.25%411416.3474111530000000050.00%4111013.3200000030
3Lee StempniakMarlies de Toronto (TOR)RW7108183557431131232.26%310515.04437824000002171.43%7221023.4200100201
4Matt MoulsonMarlies de Toronto (TOR)LW771118-419151042482029.17%214120.26448112800003200100.00%6222002.5400111110
5Patrik BerglundMarlies de Toronto (TOR)C/LW75101532010201871127.78%613319.112353250000100062.26%10666002.2400000001
6Cal O'ReillyMarlies de Toronto (TOR)C718941408814557.14%616022.930442280000260065.73%17893001.1200000000
7Jeremy BraccoMarlies de Toronto (TOR)RW735837553152620.00%17911.3310113000000050.00%2103002.0200001100
8Dan GirardiMaple Leafs de TorontoD4156-3208913327.69%811328.32123326000013000.00%027001.0600000000
9Chris KunitzMarlies de Toronto (TOR)LW/RW71562204983612.50%29613.7700006000140033.33%370001.2400000001
10Victor OlofssonMarlies de Toronto (TOR)LW/RW22467200180325.00%02010.430000000000000.00%030005.7600000010
11Peter HollandMarlies de Toronto (TOR)C742633325852031320.00%38812.6400000000280054.00%50163001.3600113000
12Adam McQuaidMarlies de Toronto (TOR)D60558181010144430.00%711519.26022122000015000.00%004000.8700011000
13David SchlemkoMarlies de Toronto (TOR)D605510005113450.00%413121.91000022000016000.00%0111000.7600000000
14Ben HarpurMarlies de Toronto (TOR)D622413830133116218.18%109315.5100015000113100.00%006000.8600024001
15Niklas KronwallMarlies de Toronto (TOR)D6123-2409557220.00%716627.76000232000028100.00%003000.3600000000
16Frederik GauthierMarlies de Toronto (TOR)C7202-10047111718.18%2679.59101210000130062.79%4372000.6000000000
17Luca SbisaMarlies de Toronto (TOR)D2022600123110.00%03015.080000000006000.00%002001.3300000000
18Ryan SproulMarlies de Toronto (TOR)D602211515355320.00%57111.920000000001000.00%001000.5600102000
19Morgan GeekieMarlies de Toronto (TOR)C/RW21010201120250.00%1157.930000000000000.00%020001.2600000000
Team Total or Average1106396159432191451251202578313524.51%75185416.862329525728600041925163.30%40613162051.71006815565
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Craig AndersonMarlies de Toronto (TOR)75000.8196.063760038210113100.000070000
2Cam WardMarlies de Toronto (TOR)20200.56015.354300112514200.000007000
Team Total or Average95200.7917.004200049235127300.000077000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Aaron LuchukMarlies de Toronto (TOR)C221997-04-05Yes181 Lbs5 ft11NoNoNo2ELCPro & Farm759,166$0$0$NoLink
Adam BrooksMarlies de Toronto (TOR)C231996-05-06No174 Lbs5 ft11NoNoNo2RFAPro & Farm759,167$0$0$NoLink
Adam CracknellMarlies de Toronto (TOR)RW341985-07-15No220 Lbs6 ft4NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Adam McQuaidMarlies de Toronto (TOR)D331986-10-12No212 Lbs6 ft5NoNoNo1UFAPro & Farm2,750,000$0$0$NoLink
Ben HarpurMarlies de Toronto (TOR)D241995-01-12No222 Lbs6 ft6NoNoNo1RFAPro & Farm0$0$NoLink
Cal O'ReillyMarlies de Toronto (TOR)C331986-09-30No188 Lbs6 ft0NoNoNo1UFAPro & Farm700,000$0$0$NoLink
Cam WardMarlies de Toronto (TOR)G351984-02-29No194 Lbs6 ft1NoNoNo1UFAPro & Farm3,000,000$0$0$NoLink
Chris KunitzMarlies de Toronto (TOR)LW/RW401979-09-26No195 Lbs6 ft0NoNoNo1UFAPro & Farm1,000,000$0$0$NoLink
Craig AndersonMarlies de Toronto (TOR)G381981-05-21No185 Lbs6 ft2NoNoNo2UFAPro & Farm1,000,000$0$0$NoLink
David SchlemkoMarlies de Toronto (TOR)D321987-05-07No189 Lbs6 ft1NoNoNo2UFAPro & Farm2,100,000$0$0$NoLink
Drew StaffordMarlies de Toronto (TOR)LW/RW331985-10-30No215 Lbs6 ft2NoNoNo1UFAPro & Farm810,000$0$0$NoLink
Frederik GauthierMarlies de Toronto (TOR)C241995-04-26No238 Lbs6 ft5NoNoNo2RFAPro & Farm675,000$0$0$NoLink
Jeremy BraccoMarlies de Toronto (TOR)RW221997-03-17No180 Lbs5 ft9NoNoNo2ELCPro & Farm842,500$0$0$NoLink
Kasimir KaskisuoMarlies de Toronto (TOR)G261993-10-01No201 Lbs6 ft2NoNoNo2RFAPro & Farm675,000$0$0$NoLink
Lee StempniakMarlies de Toronto (TOR)RW361983-02-03No195 Lbs5 ft11NoNoNo1UFAPro & Farm2,500,000$0$0$NoLink
Luca SbisaMarlies de Toronto (TOR)D291990-01-30No209 Lbs6 ft2NoNoNo1UFAPro & Farm1,500,000$0$0$NoLink
Mason MarchmentMarlies de Toronto (TOR)LW241995-03-06No204 Lbs6 ft4NoNoNo2RFAPro & Farm767,500$0$0$NoLink
Matt MoulsonMarlies de Toronto (TOR)LW351983-11-01No200 Lbs6 ft1NoNoNo1UFAPro & Farm5,000,000$0$0$NoLink
Morgan GeekieMarlies de Toronto (TOR)C/RW211998-07-20Yes179 Lbs6 ft2NoNoNo3ELCPro & Farm763,333$0$0$NoLink
Niklas KronwallMarlies de Toronto (TOR)D381981-01-11No194 Lbs6 ft0NoNoNo1UFAPro & Farm4,750,000$0$0$NoLink
Patrik BerglundMarlies de Toronto (TOR)C/LW311988-06-02No219 Lbs6 ft4NoNoNo5UFAPro & Farm3,850,000$0$0$NoLink
Peter HollandMarlies de Toronto (TOR)C281991-01-14No205 Lbs6 ft2NoNoNo1UFAPro & Farm675,000$0$0$NoLink
Pierre EngvallMarlies de Toronto (TOR)LW/RW231996-05-31Yes192 Lbs6 ft4NoNoNo2RFAPro & Farm925,000$0$0$NoLink
Ryan SproulMarlies de Toronto (TOR)D261993-01-12No205 Lbs6 ft4NoNoNo1RFAPro & Farm575,000$0$0$NoLink
Trevor MooreMarlies de Toronto (TOR)LW/RW241995-03-31No170 Lbs5 ft9NoNoNo1RFAPro & Farm925,000$0$0$NoLink
Tyler GaudetMarlies de Toronto (TOR)C261993-03-04No205 Lbs6 ft3NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Victor OlofssonMarlies de Toronto (TOR)LW/RW241995-07-18Yes172 Lbs5 ft11NoNoNo2RFAPro & Farm767,500$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2729.04198 Lbs6 ft21.591,458,117$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Victor OlofssonCal O'ReillyAdam Cracknell40005
2Drew StaffordPatrik BerglundLee Stempniak30004
3Chris KunitzPeter HollandJeremy Bracco20131
4Matt MoulsonFrederik GauthierMorgan Geekie10500
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Niklas KronwallBen Harpur40113
2David SchlemkoAdam McQuaid30131
3Ryan SproulLuca Sbisa30140
4Niklas KronwallBen Harpur0122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Matt MoulsonCal O'ReillyAdam Cracknell60122
2Drew StaffordPatrik BerglundLee Stempniak40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Niklas KronwallBen Harpur60122
2David SchlemkoAdam McQuaid40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Cal O'ReillyMatt Moulson60122
2Patrik BerglundPeter Holland40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Niklas KronwallBen Harpur60122
2David SchlemkoAdam McQuaid40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Cal O'Reilly60140Niklas KronwallBen Harpur60122
2Matt Moulson40140David SchlemkoAdam McQuaid40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Cal O'ReillyMatt Moulson60122
2Patrik BerglundPeter Holland40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Niklas KronwallBen Harpur60122
2David SchlemkoAdam McQuaid40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Matt MoulsonCal O'ReillyAdam CracknellNiklas KronwallBen Harpur
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Matt MoulsonCal O'ReillyAdam CracknellNiklas KronwallBen Harpur
Extra Forwards
Normal PowerPlayPenalty Kill
Jeremy Bracco, Chris Kunitz, Frederik GauthierJeremy Bracco, Chris KunitzFrederik Gauthier
Extra Defensemen
Normal PowerPlayPenalty Kill
Ryan Sproul, Luca Sbisa, David SchlemkoRyan SproulLuca Sbisa, David Schlemko
Penalty Shots
Cal O'Reilly, Matt Moulson, Patrik Berglund, Peter Holland, Adam Cracknell
Goalie
#1 : Craig Anderson, #2 : Cam Ward
Custom OT Lines Forwards
Cal O'Reilly, Matt Moulson, Patrik Berglund, Peter Holland, Adam Cracknell, Lee Stempniak, Lee Stempniak, Drew Stafford, Jeremy Bracco, Chris Kunitz, Frederik Gauthier
Custom OT Lines Defensemen
Niklas Kronwall, Ben Harpur, David Schlemko, Adam McQuaid, Ryan Sproul


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Crunch de Syracuse1100000012661100000012660000000000021.000122133002824110459310466029455169555.56%5180.00%08814261.97%7213354.14%10817163.16%1721141425410554
2Griffins de Grand Rapids1100000012480000000000011000000124821.0001218300028241103093104660371826253266.67%8187.50%08814261.97%7213354.14%10817163.16%1721141425410554
3Monsters de Cleveland11000000541000000000001100000054121.0005914002824110379310466025823269333.33%4175.00%08814261.97%7213354.14%10817163.16%1721141425410554
4Rampage de San Antonio1100000010461100000010460000000000021.000101626002824110349310466025533207342.86%4175.00%08814261.97%7213354.14%10817163.16%1721141425410554
5Rocket de Laval10100000411-710100000411-70000000000000.00047110028241103793104660401741117228.57%3233.33%08814261.97%7213354.14%10817163.16%1721141425410554
6Senators de Belleville10100000913-410100000913-40000000000000.00091221002824110469310466045152879888.89%4250.00%08814261.97%7213354.14%10817163.16%1721141425410554
Total752000006349145320000046415220000001789100.714631001630028241102639310466023578223127482347.92%341070.59%08814261.97%7213354.14%10817163.16%1721141425410554
8Wild de l'Iowa1100000011741100000011740000000000021.000111728002824110349310466034111722400.00%6266.67%08814261.97%7213354.14%10817163.16%1721141425410554
_Since Last GM Reset752000006349145320000046415220000001789100.714631001630028241102639310466023578223127482347.92%341070.59%08814261.97%7213354.14%10817163.16%1721141425410554
_Vs Conference5320000042384312000002530-522000000178960.6004267109002824110195931046601766217385372054.05%24770.83%08814261.97%7213354.14%10817163.16%1721141425410554
_Vs Division4220000037343312000002530-511000000124840.500375895002824110158931046601515415059281760.71%20670.00%08814261.97%7213354.14%10817163.16%1721141425410554

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
710W4631001632632357822312700
All Games
GPWLOTWOTL SOWSOLGFGA
75200006349
Home Games
GPWLOTWOTL SOWSOLGFGA
53200004641
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2200000178
Last 10 Games
WLOTWOTL SOWSOL
520000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
482347.92%341070.59%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
931046602824110
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
8814261.97%7213354.14%10817163.16%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1721141425410554


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-08-163Senators de Belleville13Marlies de Toronto9LBoxScore
3 - 2019-08-1813Marlies de Toronto5Monsters de Cleveland4WBoxScore
4 - 2019-08-1929Rocket de Laval11Marlies de Toronto4LBoxScore
6 - 2019-08-2135Rampage de San Antonio4Marlies de Toronto10WBoxScore
9 - 2019-08-2456Crunch de Syracuse6Marlies de Toronto12WBoxScore
11 - 2019-08-2666Marlies de Toronto12Griffins de Grand Rapids4WBoxScore
14 - 2019-08-2988Wild de l'Iowa7Marlies de Toronto11WBoxScore
15 - 2019-08-3097Marlies de Toronto-Bears de Hershey-
18 - 2019-09-02123Bruins de Providence -Marlies de Toronto-
20 - 2019-09-04132Monsters de Cleveland-Marlies de Toronto-
21 - 2019-09-05133Marlies de Toronto-Bruins de Providence -
24 - 2019-09-08158Barracuda de San José-Marlies de Toronto-
25 - 2019-09-09166Marlies de Toronto-Rocket de Laval-
28 - 2019-09-12187Bears de Hershey-Marlies de Toronto-
32 - 2019-09-16214Marlies de Toronto-Phantoms de Lehigh Valley-
35 - 2019-09-19232Reign d'Ontario-Marlies de Toronto-
37 - 2019-09-21247Wolves de Chicago-Marlies de Toronto-
39 - 2019-09-23261Phantoms de Lehigh Valley-Marlies de Toronto-
40 - 2019-09-24265Marlies de Toronto-IceHogs de Rockford-
43 - 2019-09-27283Marlies de Toronto-Sound Tigers de Bridgeport-
45 - 2019-09-29297Bruins de Providence -Marlies de Toronto-
46 - 2019-09-30309Marlies de Toronto-Penguins de Wilkes-Barre/Scranton-
49 - 2019-10-03330Marlies de Toronto-Wolves de Chicago-
51 - 2019-10-05333Marlies de Toronto-Roadrunners de Tucson-
53 - 2019-10-07350Marlies de Toronto-Eagles du Colorado-
57 - 2019-10-11381Marlies de Toronto-Griffins de Grand Rapids-
59 - 2019-10-13393Marlies de Toronto-Americans de Rochester-
60 - 2019-10-14415Americans de Rochester-Marlies de Toronto-
63 - 2019-10-17430Marlies de Toronto-Phantoms de Lehigh Valley-
64 - 2019-10-18437Eagles du Colorado-Marlies de Toronto-
67 - 2019-10-21460Marlies de Toronto-Rampage de San Antonio-
70 - 2019-10-24481Marlies de Toronto-Comets d'Utica-
72 - 2019-10-26490Marlies de Toronto-Heat de Stockton-
74 - 2019-10-28504Marlies de Toronto-Condors de Bakersfield-
77 - 2019-10-31531Americans de Rochester-Marlies de Toronto-
80 - 2019-11-03551Marlies de Toronto-Wolfpack de Hartford-
81 - 2019-11-04562Griffins de Grand Rapids-Marlies de Toronto-
83 - 2019-11-06578Checkers de Charlotte-Marlies de Toronto-
87 - 2019-11-10587Marlies de Toronto-Devils de Binghamton-
88 - 2019-11-11599Wolfpack de Hartford-Marlies de Toronto-
91 - 2019-11-14622Marlies de Toronto-Wild de l'Iowa-
93 - 2019-11-16638Marlies de Toronto-Moose du Manitoba-
95 - 2019-11-18650Sound Tigers de Bridgeport-Marlies de Toronto-
97 - 2019-11-20662Condors de Bakersfield-Marlies de Toronto-
99 - 2019-11-22677Moose du Manitoba-Marlies de Toronto-
103 - 2019-11-26705Marlies de Toronto-Thunderbirds de Springfield-
105 - 2019-11-28723Devils de Binghamton-Marlies de Toronto-
107 - 2019-11-30737Heat de Stockton-Marlies de Toronto-
109 - 2019-12-02753IceHogs de Rockford-Marlies de Toronto-
118 - 2019-12-11770Marlies de Toronto-Admirals de Milwaukee-
120 - 2019-12-13777Marlies de Toronto-Stars du Texas-
123 - 2019-12-16804Senators de Belleville-Marlies de Toronto-
125 - 2019-12-18811Thunderbirds de Springfield-Marlies de Toronto-
127 - 2019-12-20826Marlies de Toronto-Wolfpack de Hartford-
129 - 2019-12-22842Gulls de San Diego-Marlies de Toronto-
130 - 2019-12-23847Marlies de Toronto-Rocket de Laval-
133 - 2019-12-26875Roadrunners de Tucson-Marlies de Toronto-
135 - 2019-12-28889Stars du Texas-Marlies de Toronto-
137 - 2019-12-30902Marlies de Toronto-Senators de Belleville-
138 - 2019-12-31906Marlies de Toronto-Americans de Rochester-
140 - 2020-01-02924Marlies de Toronto-Penguins de Wilkes-Barre/Scranton-
142 - 2020-01-04938Penguins de Wilkes-Barre/Scranton-Marlies de Toronto-
144 - 2020-01-06956Checkers de Charlotte-Marlies de Toronto-
147 - 2020-01-09979Marlies de Toronto-Crunch de Syracuse-
Trade Deadline --- Trades can’t be done after this day is simulated!
149 - 2020-01-11986Marlies de Toronto-Thunderbirds de Springfield-
151 - 2020-01-131010Comets d'Utica-Marlies de Toronto-
154 - 2020-01-161025Marlies de Toronto-Barracuda de San José-
156 - 2020-01-181036Marlies de Toronto-Reign d'Ontario-
157 - 2020-01-191043Marlies de Toronto-Gulls de San Diego-
161 - 2020-01-231077Crunch de Syracuse-Marlies de Toronto-
163 - 2020-01-251091Admirals de Milwaukee-Marlies de Toronto-
165 - 2020-01-271099Marlies de Toronto-Bruins de Providence -
168 - 2020-01-301129Devils de Binghamton-Marlies de Toronto-
170 - 2020-02-011145Sound Tigers de Bridgeport-Marlies de Toronto-
172 - 2020-02-031162Monsters de Cleveland-Marlies de Toronto-
174 - 2020-02-051174Thunderbirds de Springfield-Marlies de Toronto-
176 - 2020-02-071188Marlies de Toronto-Crunch de Syracuse-
177 - 2020-02-081192Marlies de Toronto-Checkers de Charlotte-
179 - 2020-02-101213Marlies de Toronto-Senators de Belleville-
182 - 2020-02-131238Marlies de Toronto-Bears de Hershey-
184 - 2020-02-151253Griffins de Grand Rapids-Marlies de Toronto-
186 - 2020-02-171270Rocket de Laval-Marlies de Toronto-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
36 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 3,936,917$ 3,936,917$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 172 21,166$ 3,640,552$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
175200000634914532000004641522000000178910631001630028241102639310466023578223127482347.92%341070.59%08814261.97%7213354.14%10817163.16%1721141425410554
Total Regular Season75200000634914532000004641522000000178910631001630028241102639310466023578223127482347.92%341070.59%08814261.97%7213354.14%10817163.16%1721141425410554