Marlies de Toronto

GP: 23 | W: 17 | L: 6 | OTL: 0 | P: 34
GF: 266 | GA: 190 | PP%: 50.00% | PK%: 57.97%
GM : Simon Laporte | Morale : 40 | Team Overall : 63
Next Games #333 vs Roadrunners de Tucson
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Matt MoulsonX100.007674806974788170506367756376776940670
2Cal O'ReillyX100.007568926968838770807458715564646840670
3Patrik BerglundXX99.007645917381656066775959824576796740660
4Adam CracknellX96.008383826983747767506266736360616940660
5Peter HollandX100.007676777276798269806565716264646840660
6Drew StaffordXX100.007344897579637566386259676281836540650
7Lee StempniakX100.007570867670545269506463756082846740650
8Chris KunitzXX100.008055877172548662335959676686946540640
9Jeremy BraccoX100.007264927364767869507460655747476740640
10Frederik GauthierX100.007946947088528559796356722560606540630
11Victor Olofsson (R)XX100.007263936563757768506567646444446840620
12Morgan Geekie (R)XX100.007467906267828762785962645944446540610
13Trevor MooreXX100.006741976661548760256958692546466540600
14Tyler GaudetX100.007877806877727659745856655345456240600
15Ben HarpurX100.008299707088747358254847882559596240680
16Ryan SproulX100.008278927378758055254649664746466040630
17Luca SbisaX100.008376997776454644252839703771735240600
Scratches
1Adam BrooksX100.007063866363727562785764626144446440590
2Pierre Engvall (R)XX100.007574765874687158504962635944446240570
3Mason MarchmentX100.007377625977616260505660635744446140570
4Aaron Luchuk (R)X100.007666996766575854684954635144445840560
5Adam McQuaidX100.008970767282686256254848872571756240680
TEAM AVERAGE99.77776786697467746253585870515960644063
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Craig Anderson100.00678483736569476871677875776740670
2Cam Ward100.00646869747256446463647377806240630
Scratches
1Kasimir Kaskisuo100.00515974784857505655543044445440550
TEAM AVERAGE100.0061707575626147636362606567614062
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Sheldon Keefe37797575535663CAN371500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Adam CracknellMarlies de Toronto (TOR)RW2352429437104704211134478938.81%1741518.0515122723633034362255.56%277025094.5301248334
2Patrik BerglundMarlies de Toronto (TOR)C/LW233047773740344195426631.58%1845319.725141910641011472064.44%4195616043.4011000323
3Lee StempniakMarlies de Toronto (TOR)RW2331346527135211384404736.90%1533814.7468141144000003163.64%225819053.8311100302
4Matt MoulsonMarlies de Toronto (TOR)LW19303262292915211778185238.46%1138020.0391221205634771110172.00%50546043.2601111331
5Drew StaffordMarlies de Toronto (TOR)LW/RW232433572440271274102932.43%1136215.76118192265000000057.14%21384023.1500000041
6Peter HollandMarlies de Toronto (TOR)C23263056276745321976164134.21%1434515.005385170114361068.12%276487053.2501414220
7Victor OlofssonMarlies de Toronto (TOR)LW/RW1416193522204740131840.00%214310.241123600002100.00%2216024.8800000021
8Ben HarpurMarlies de Toronto (TOR)D22328313721512554275029196.00%5245220.57066642134281100.00%0151001.37005812001
9Frederik GauthierMarlies de Toronto (TOR)C2372229-58011183092323.33%1429612.882683172134652168.18%2641612001.9600000110
10Jeremy BraccoMarlies de Toronto (TOR)RW23111829-411512550112722.00%625511.1111215000000156.25%16475002.2700001100
11Chris KunitzMarlies de Toronto (TOR)LW/RW23131528-280181844182429.55%429212.70000061123301068.42%19322011.9200000011
12Morgan GeekieMarlies de Toronto (TOR)C/RW181311241740562971344.83%41226.7900000000002063.89%36135013.9300000000
13David SchlemkoMaple Leafs de TorontoD1801616312026262110100.00%4137520.88011145011256000.00%0327000.8501000000
14Niklas KronwallMaple Leafs de TorontoD172911203202316211289.52%2146927.61000562011190100.00%0018000.4700000000
15Ryan SproulMarlies de Toronto (TOR)D221101121583025161915145.26%2037016.86101117011136000.00%0021000.5900222001
16Cal O'ReillyMarlies de Toronto (TOR)C81910514010916556.25%718523.140552310001340063.03%21194001.0800000000
17Adam McQuaidMarlies de Toronto (TOR)D12189133610212411669.09%1522218.53022232011130000.00%007000.8100011000
18Luca SbisaMarlies de Toronto (TOR)D1809926751717281090.00%2529316.2900005000240000.00%0524000.6100001000
19Dan GirardiMaple Leafs de TorontoD4156-3208913327.69%811328.32123326000013000.00%027001.0600000000
20Tyler GaudetMarlies de Toronto (TOR)C1533681353385237.50%1694.6100001000130075.61%4130001.7300001000
Team Total or Average37126540066536763331541431492132650428.77%306595616.0657811381186161114253471716665.81%14044762660332.2326151731161815
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Craig AndersonMarlies de Toronto (TOR)117200.8255.906000059337197200.0000110000
2Cam WardMarlies de Toronto (TOR)95200.7977.954150055271171300.8005615000
Team Total or Average2012400.8126.73101600114608368500.80051715000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Aaron LuchukMarlies de Toronto (TOR)C221997-04-05Yes181 Lbs5 ft11NoNoNo2ELCPro & Farm759,166$0$0$NoLink
Adam BrooksMarlies de Toronto (TOR)C231996-05-06No174 Lbs5 ft11NoNoNo2RFAPro & Farm759,167$0$0$NoLink
Adam CracknellMarlies de Toronto (TOR)RW341985-07-15No220 Lbs6 ft4NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Adam McQuaidMarlies de Toronto (TOR)D331986-10-12No212 Lbs6 ft5NoNoNo1UFAPro & Farm2,750,000$0$0$NoLink
Ben HarpurMarlies de Toronto (TOR)D241995-01-12No222 Lbs6 ft6NoNoNo1RFAPro & Farm0$0$NoLink
Cal O'ReillyMarlies de Toronto (TOR)C331986-09-30No188 Lbs6 ft0NoNoNo1UFAPro & Farm700,000$0$0$NoLink
Cam WardMarlies de Toronto (TOR)G351984-02-29No194 Lbs6 ft1NoNoNo1UFAPro & Farm3,000,000$0$0$NoLink
Chris KunitzMarlies de Toronto (TOR)LW/RW401979-09-26No195 Lbs6 ft0NoNoNo1UFAPro & Farm1,000,000$0$0$NoLink
Craig AndersonMarlies de Toronto (TOR)G381981-05-21No185 Lbs6 ft2NoNoNo2UFAPro & Farm1,000,000$0$0$NoLink
Drew StaffordMarlies de Toronto (TOR)LW/RW341985-10-30No215 Lbs6 ft2NoNoNo1UFAPro & Farm810,000$0$0$NoLink
Frederik GauthierMarlies de Toronto (TOR)C241995-04-26No238 Lbs6 ft5NoNoNo2RFAPro & Farm675,000$0$0$NoLink
Jeremy BraccoMarlies de Toronto (TOR)RW221997-03-17No180 Lbs5 ft9NoNoNo2ELCPro & Farm842,500$0$0$NoLink
Kasimir KaskisuoMarlies de Toronto (TOR)G261993-10-01No201 Lbs6 ft2NoNoNo2RFAPro & Farm675,000$0$0$NoLink
Lee StempniakMarlies de Toronto (TOR)RW361983-02-03No195 Lbs5 ft11NoNoNo1UFAPro & Farm2,500,000$0$0$NoLink
Luca SbisaMarlies de Toronto (TOR)D291990-01-30No209 Lbs6 ft2NoNoNo1UFAPro & Farm1,500,000$0$0$NoLink
Mason MarchmentMarlies de Toronto (TOR)LW241995-03-06No204 Lbs6 ft4NoNoNo2RFAPro & Farm767,500$0$0$NoLink
Matt MoulsonMarlies de Toronto (TOR)LW361983-11-01No200 Lbs6 ft1NoNoNo1UFAPro & Farm5,000,000$0$0$NoLink
Morgan GeekieMarlies de Toronto (TOR)C/RW211998-07-20Yes179 Lbs6 ft2NoNoNo3ELCPro & Farm763,333$0$0$NoLink
Patrik BerglundMarlies de Toronto (TOR)C/LW311988-06-02No219 Lbs6 ft4NoNoNo5UFAPro & Farm3,850,000$0$0$NoLink
Peter HollandMarlies de Toronto (TOR)C281991-01-14No205 Lbs6 ft2NoNoNo1UFAPro & Farm675,000$0$0$NoLink
Pierre EngvallMarlies de Toronto (TOR)LW/RW231996-05-31Yes192 Lbs6 ft4NoNoNo2RFAPro & Farm925,000$0$0$NoLink
Ryan SproulMarlies de Toronto (TOR)D261993-01-12No205 Lbs6 ft4NoNoNo1RFAPro & Farm575,000$0$0$NoLink
Trevor MooreMarlies de Toronto (TOR)LW/RW241995-03-31No170 Lbs5 ft9NoNoNo1RFAPro & Farm925,000$0$0$NoLink
Tyler GaudetMarlies de Toronto (TOR)C261993-03-04No205 Lbs6 ft3NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Victor OlofssonMarlies de Toronto (TOR)LW/RW241995-07-18Yes172 Lbs5 ft11NoNoNo2RFAPro & Farm767,500$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2528.64198 Lbs6 ft21.601,300,767$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Patrik BerglundAdam Cracknell40005
2Drew StaffordPeter HollandLee Stempniak30005
3Chris KunitzFrederik GauthierJeremy Bracco20005
4Victor OlofssonMorgan Geekie10005
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben Harpur40005
2Ryan Sproul30005
3Luca Sbisa20005
4Ben Harpur10005
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Patrik BerglundAdam Cracknell60122
2Drew StaffordPeter HollandLee Stempniak40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben Harpur60122
2Ryan Sproul40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Adam Cracknell60122
2Patrik BerglundPeter Holland40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben Harpur60122
2Ryan Sproul40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Ben Harpur60122
2Adam Cracknell40122Ryan Sproul40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Adam Cracknell60122
2Patrik BerglundPeter Holland40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben Harpur60122
2Ryan Sproul40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Patrik BerglundAdam CracknellBen Harpur
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Patrik BerglundAdam CracknellBen Harpur
Extra Forwards
Normal PowerPlayPenalty Kill
Tyler Gaudet, Jeremy Bracco, Chris KunitzTyler Gaudet, Jeremy BraccoChris Kunitz
Extra Defensemen
Normal PowerPlayPenalty Kill
Luca Sbisa, Ryan Sproul, Luca SbisaRyan Sproul,
Penalty Shots
, Adam Cracknell, Patrik Berglund, Peter Holland, Lee Stempniak
Goalie
#1 : , #2 :
Custom OT Lines Forwards
, Adam Cracknell, Patrik Berglund, Peter Holland, Lee Stempniak, Drew Stafford, Drew Stafford, Jeremy Bracco, Chris Kunitz, Frederik Gauthier, Victor Olofsson
Custom OT Lines Defensemen
, Ben Harpur, , Ryan Sproul, Luca Sbisa


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Barracuda de San José1100000010371100000010370000000000021.0001013230014980362433603242371126338242150.00%5180.00%028342366.90%24941060.73%41264563.88%598419470157315169
2Bears de Hershey21100000191721100000012931010000078-120.50019304900149803628236032423711802954369555.56%17947.06%228342366.90%24941060.73%41264563.88%598419470157315169
3Bruins de Providence 321000003421132200000033112210100000110-940.6673449830014980362135360324237118832715112650.00%18666.67%328342366.90%24941060.73%41264563.88%598419470157315169
4Crunch de Syracuse1100000012661100000012660000000000021.0001221330014980362453603242371129455169555.56%5180.00%028342366.90%24941060.73%41264563.88%598419470157315169
5Griffins de Grand Rapids1100000012480000000000011000000124821.00012183000149803623036032423711371826253266.67%8187.50%028342366.90%24941060.73%41264563.88%598419470157315169
6IceHogs de Rockford110000001941500000000000110000001941521.0001923420014980362383603242371113716176350.00%30100.00%028342366.90%24941060.73%41264563.88%598419470157315169
7Monsters de Cleveland220000002872111000000233201100000054141.000285078001498036276360324237116024485114750.00%9277.78%228342366.90%24941060.73%41264563.88%598419470157315169
8Penguins de Wilkes-Barre/Scranton110000001715200000000000110000001715221.00017244100149803624636032423711301618134250.00%4325.00%028342366.90%24941060.73%41264563.88%598419470157315169
9Phantoms de Lehigh Valley220000001813511000000111011100000073441.00018284600149803627736032423711902963426116.67%14657.14%128342366.90%24941060.73%41264563.88%598419470157315169
10Rampage de San Antonio1100000010461100000010460000000000021.0001016260014980362343603242371125533207342.86%4175.00%028342366.90%24941060.73%41264563.88%598419470157315169
11Reign d'Ontario10000010871100000108710000000000021.000812200014980362433603242371144231220300.00%6266.67%128342366.90%24941060.73%41264563.88%598419470157315169
12Rocket de Laval202000001125-1410100000411-710100000714-700.0001118290014980362733603242371189401032813430.77%141028.57%028342366.90%24941060.73%41264563.88%598419470157315169
13Senators de Belleville10100000913-410100000913-40000000000000.000912210014980362463603242371145152879888.89%4250.00%028342366.90%24941060.73%41264563.88%598419470157315169
14Sound Tigers de Bridgeport110000001310300000000000110000001310321.00013183100149803624736032423711412311134250.00%30100.00%028342366.90%24941060.73%41264563.88%598419470157315169
Total23166000102661907613102000101659273106400000101983340.7392664046700014980362927360324237118073126694171145750.00%1385857.97%1128342366.90%24941060.73%41264563.88%598419470157315169
16Wild de l'Iowa1100000011741100000011740000000000021.0001117280014980362343603242371134111722400.00%6266.67%028342366.90%24941060.73%41264563.88%598419470157315169
17Wolves de Chicago21100000353411100000022814101000001326-1320.50035559000149803627836032423711763376329888.89%181233.33%228342366.90%24941060.73%41264563.88%598419470157315169
_Since Last GM Reset23166000102661907613102000101659273106400000101983340.7392664046700014980362927360324237118073126694171145750.00%1385857.97%1128342366.90%24941060.73%41264563.88%598419470157315169
_Vs Conference1611500000173131428620000010463418530000069681220.688173268441001498036265736032423711589230477282834250.60%964058.33%828342366.90%24941060.73%41264563.88%598419470157315169
_Vs Division844000007869953200000584117312000002028-880.50078118196001498036232936032423711288109283127462554.35%492059.18%328342366.90%24941060.73%41264563.88%598419470157315169

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2334L126640467092780731266941700
All Games
GPWLOTWOTL SOWSOLGFGA
231660010266190
Home Games
GPWLOTWOTL SOWSOLGFGA
13102001016592
Visitor Games
GPWLOTWOTL SOWSOLGFGA
1064000010198
Last 10 Games
WLOTWOTL SOWSOL
810010
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1145750.00%1385857.97%11
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
3603242371114980362
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
28342366.90%24941060.73%41264563.88%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
598419470157315169


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-08-163Senators de Belleville13Marlies de Toronto9LBoxScore
3 - 2019-08-1813Marlies de Toronto5Monsters de Cleveland4WBoxScore
4 - 2019-08-1929Rocket de Laval11Marlies de Toronto4LBoxScore
6 - 2019-08-2135Rampage de San Antonio4Marlies de Toronto10WBoxScore
9 - 2019-08-2456Crunch de Syracuse6Marlies de Toronto12WBoxScore
11 - 2019-08-2666Marlies de Toronto12Griffins de Grand Rapids4WBoxScore
14 - 2019-08-2988Wild de l'Iowa7Marlies de Toronto11WBoxScore
15 - 2019-08-3097Marlies de Toronto7Bears de Hershey8LBoxScore
18 - 2019-09-02123Bruins de Providence 4Marlies de Toronto13WBoxScore
20 - 2019-09-04132Monsters de Cleveland3Marlies de Toronto23WBoxScore
21 - 2019-09-05133Marlies de Toronto1Bruins de Providence 10LBoxScore
24 - 2019-09-08158Barracuda de San José3Marlies de Toronto10WBoxScore
25 - 2019-09-09166Marlies de Toronto7Rocket de Laval14LBoxScore
28 - 2019-09-12187Bears de Hershey9Marlies de Toronto12WBoxScore
32 - 2019-09-16214Marlies de Toronto7Phantoms de Lehigh Valley3WBoxScore
35 - 2019-09-19232Reign d'Ontario7Marlies de Toronto8WXXBoxScore
37 - 2019-09-21247Wolves de Chicago8Marlies de Toronto22WBoxScore
39 - 2019-09-23261Phantoms de Lehigh Valley10Marlies de Toronto11WBoxScore
40 - 2019-09-24265Marlies de Toronto19IceHogs de Rockford4WBoxScore
43 - 2019-09-27283Marlies de Toronto13Sound Tigers de Bridgeport10WBoxScore
45 - 2019-09-29297Bruins de Providence 7Marlies de Toronto20WBoxScore
46 - 2019-09-30309Marlies de Toronto17Penguins de Wilkes-Barre/Scranton15WBoxScore
49 - 2019-10-03330Marlies de Toronto13Wolves de Chicago26LBoxScore
51 - 2019-10-05333Marlies de Toronto-Roadrunners de Tucson-
53 - 2019-10-07350Marlies de Toronto-Eagles du Colorado-
57 - 2019-10-11381Marlies de Toronto-Griffins de Grand Rapids-
59 - 2019-10-13393Marlies de Toronto-Americans de Rochester-
60 - 2019-10-14415Americans de Rochester-Marlies de Toronto-
63 - 2019-10-17430Marlies de Toronto-Phantoms de Lehigh Valley-
64 - 2019-10-18437Eagles du Colorado-Marlies de Toronto-
67 - 2019-10-21460Marlies de Toronto-Rampage de San Antonio-
70 - 2019-10-24481Marlies de Toronto-Comets d'Utica-
72 - 2019-10-26490Marlies de Toronto-Heat de Stockton-
74 - 2019-10-28504Marlies de Toronto-Condors de Bakersfield-
77 - 2019-10-31531Americans de Rochester-Marlies de Toronto-
80 - 2019-11-03551Marlies de Toronto-Wolfpack de Hartford-
81 - 2019-11-04562Griffins de Grand Rapids-Marlies de Toronto-
83 - 2019-11-06578Checkers de Charlotte-Marlies de Toronto-
87 - 2019-11-10587Marlies de Toronto-Devils de Binghamton-
88 - 2019-11-11599Wolfpack de Hartford-Marlies de Toronto-
91 - 2019-11-14622Marlies de Toronto-Wild de l'Iowa-
93 - 2019-11-16638Marlies de Toronto-Moose du Manitoba-
95 - 2019-11-18650Sound Tigers de Bridgeport-Marlies de Toronto-
97 - 2019-11-20662Condors de Bakersfield-Marlies de Toronto-
99 - 2019-11-22677Moose du Manitoba-Marlies de Toronto-
103 - 2019-11-26705Marlies de Toronto-Thunderbirds de Springfield-
105 - 2019-11-28723Devils de Binghamton-Marlies de Toronto-
107 - 2019-11-30737Heat de Stockton-Marlies de Toronto-
109 - 2019-12-02753IceHogs de Rockford-Marlies de Toronto-
118 - 2019-12-11770Marlies de Toronto-Admirals de Milwaukee-
120 - 2019-12-13777Marlies de Toronto-Stars du Texas-
123 - 2019-12-16804Senators de Belleville-Marlies de Toronto-
125 - 2019-12-18811Thunderbirds de Springfield-Marlies de Toronto-
127 - 2019-12-20826Marlies de Toronto-Wolfpack de Hartford-
129 - 2019-12-22842Gulls de San Diego-Marlies de Toronto-
130 - 2019-12-23847Marlies de Toronto-Rocket de Laval-
133 - 2019-12-26875Roadrunners de Tucson-Marlies de Toronto-
135 - 2019-12-28889Stars du Texas-Marlies de Toronto-
137 - 2019-12-30902Marlies de Toronto-Senators de Belleville-
138 - 2019-12-31906Marlies de Toronto-Americans de Rochester-
140 - 2020-01-02924Marlies de Toronto-Penguins de Wilkes-Barre/Scranton-
142 - 2020-01-04938Penguins de Wilkes-Barre/Scranton-Marlies de Toronto-
144 - 2020-01-06956Checkers de Charlotte-Marlies de Toronto-
147 - 2020-01-09979Marlies de Toronto-Crunch de Syracuse-
Trade Deadline --- Trades can’t be done after this day is simulated!
149 - 2020-01-11986Marlies de Toronto-Thunderbirds de Springfield-
151 - 2020-01-131010Comets d'Utica-Marlies de Toronto-
154 - 2020-01-161025Marlies de Toronto-Barracuda de San José-
156 - 2020-01-181036Marlies de Toronto-Reign d'Ontario-
157 - 2020-01-191043Marlies de Toronto-Gulls de San Diego-
161 - 2020-01-231077Crunch de Syracuse-Marlies de Toronto-
163 - 2020-01-251091Admirals de Milwaukee-Marlies de Toronto-
165 - 2020-01-271099Marlies de Toronto-Bruins de Providence -
168 - 2020-01-301129Devils de Binghamton-Marlies de Toronto-
170 - 2020-02-011145Sound Tigers de Bridgeport-Marlies de Toronto-
172 - 2020-02-031162Monsters de Cleveland-Marlies de Toronto-
174 - 2020-02-051174Thunderbirds de Springfield-Marlies de Toronto-
176 - 2020-02-071188Marlies de Toronto-Crunch de Syracuse-
177 - 2020-02-081192Marlies de Toronto-Checkers de Charlotte-
179 - 2020-02-101213Marlies de Toronto-Senators de Belleville-
182 - 2020-02-131238Marlies de Toronto-Bears de Hershey-
184 - 2020-02-151253Griffins de Grand Rapids-Marlies de Toronto-
186 - 2020-02-171270Rocket de Laval-Marlies de Toronto-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
28 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 3,251,917$ 3,251,917$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 136 17,483$ 2,377,688$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
123166000102661907613102000101659273106400000101983342664046700014980362927360324237118073126694171145750.00%1385857.97%1128342366.90%24941060.73%41264563.88%598419470157315169
Total Regular Season23166000102661907613102000101659273106400000101983342664046700014980362927360324237118073126694171145750.00%1385857.97%1128342366.90%24941060.73%41264563.88%598419470157315169