Marlies de Toronto

GP: 46 | W: 32 | L: 14 | OTL: 0 | P: 64
GF: 574 | GA: 374 | PP%: 50.00% | PK%: 58.13%
GM : Simon Laporte | Morale : 40 | Team Overall : 63
Next Games #723 vs Devils de Binghamton
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Matt MoulsonX99.007674806974788170506367756376776940670
2Cal O'ReillyX100.007568926968838770807458715564646840670
3Patrik BerglundXX100.007645917381656066775959824576796740660
4Adam CracknellX100.008383826983747767506266736360616940660
5Peter HollandX100.007676777276798269806565716264646840660
6Drew StaffordXX100.007344897579637566386259676281836540650
7Lee StempniakX100.007570867670545269506463756082846740650
8Chris KunitzXX100.008055877172548662335959676686946540640
9Jeremy BraccoX100.007264927364767869507460655747476740640
10Frederik GauthierX100.007946947088528559796356722560606540630
11Victor Olofsson (R)XX100.007263936563757768506567646444446840620
12Morgan Geekie (R)XX100.007467906267828762785962645944446540610
13Trevor MooreXX100.006741976661548760256958692546466540600
14Tyler GaudetX100.007877806877727659745856655345456240600
15Ben HarpurX100.008299707088747358254847882559596240680
16Adam McQuaidX99.008970767282686256254848872571756240680
17Ryan SproulX99.008278927378758055254649664746466040630
18Luca SbisaX99.008376997776454644252839703771735240600
Scratches
1Adam BrooksX100.007063866363727562785764626144446440590
2Pierre Engvall (R)XX100.007574765874687158504962635944446240570
3Mason MarchmentX100.007377625977616260505660635744446140570
4Aaron Luchuk (R)X100.007666996766575854684954635144445840560
TEAM AVERAGE99.82776786697467746253585870515960644063
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Craig Anderson100.00678483736569476871677875776740670
2Cam Ward100.00646869747256446463647377806240630
Scratches
1Kasimir Kaskisuo100.00515974784857505655543044445440550
TEAM AVERAGE100.0061707575626147636362606567614062
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Sheldon Keefe37797575535663CAN371500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Adam CracknellMarlies de Toronto (TOR)RW46149612107416710597593109219048.06%5185518.60491968771494048496256.00%50148650254.910154121237
2Lee StempniakMarlies de Toronto (TOR)RW4669791486025538381787510038.76%3069515.121016262288000006162.22%45142350114.2611100334
3Peter HollandMarlies de Toronto (TOR)C466580145621731055934159449840.88%2970415.3112102220570114482067.63%729111200114.1201867341
4Patrik BerglundMarlies de Toronto (TOR)C/LW464887135716057651445410533.33%4081017.6181725201081011483164.19%4448231063.3311000336
5Matt MoulsonMarlies de Toronto (TOR)LW254239814033153026113327537.17%1552420.9812122424784610121472160.00%115827073.0901111632
6Ben HarpurMarlies de Toronto (TOR)D377697659406230945811263566.25%9383622.621192015801346122100.00%08100001.8200171019022
7Chris KunitzMarlies de Toronto (TOR)LW/RW46433275231953438118376936.44%2451911.30000061123302062.86%358714062.8900100121
8Frederik GauthierMarlies de Toronto (TOR)C4622527420100273882285626.83%3352311.392683172134652170.07%4414836012.8300000120
9Victor OlofssonMarlies de Toronto (TOR)LW/RW373534694620131183314142.17%62727.3711236000023120.00%10438035.0600000041
10Jeremy BraccoMarlies de Toronto (TOR)RW462341642015515982284828.05%93858.3911215000000154.55%227112023.3200001200
11Ryan SproulMarlies de Toronto (TOR)D4512526485176100474770404917.14%5389419.87369961022583000.00%01961021.4300767003
12Drew StaffordMarlies de Toronto (TOR)LW/RW312735622580302493184129.03%1746715.081181922690000111056.67%30507022.6500000042
13Morgan GeekieMarlies de Toronto (TOR)C/RW41172946402810131343121839.53%92526.1500000000002070.80%1371810013.6500002001
14Cal O'ReillyMarlies de Toronto (TOR)C167323916160262655122412.73%2038223.891131411632137850063.56%376299002.0400000040
15David SchlemkoMaple Leafs de TorontoD1801616312026262110100.00%4137520.88011145011256000.00%0327000.8501000000
16Adam McQuaidMarlies de Toronto (TOR)D181121322571537412410104.17%2940822.72033359011256000.00%0119000.6400111000
17Luca SbisaMarlies de Toronto (TOR)D2401212377528243912120.00%3745619.01011126000362000.00%0829000.5300001000
18Niklas KronwallMaple Leafs de TorontoD172911203202316211289.52%2146927.61000562011190100.00%0018000.4700000000
19Tyler GaudetMarlies de Toronto (TOR)C3834762915910146821.43%51433.7800029000180067.69%6567000.9700102000
20Dan GirardiMaple Leafs de TorontoD4156-3208913327.69%811328.32123326000013000.00%027001.0600000000
21Trevor MooreMarlies de Toronto (TOR)LW/RW23000-100131110.00%2160.710000100002000.00%125000.0000000000
Team Total or Average696573780135375312136157126151775620102132.28%5721010914.5211213524724210241518335998531865.80%25009605270772.6826422853313430
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Cam WardMarlies de Toronto (TOR)2012600.8127.071001011186273731000.80051530001
2Craig AndersonMarlies de Toronto (TOR)1711200.8335.859030088526312300.0000170000
Team Total or Average3723800.8216.4919040120611536851300.80053230001


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Aaron LuchukMarlies de Toronto (TOR)C221997-04-05Yes181 Lbs5 ft11NoNoNo2Pro & Farm759,166$0$0$No759,166$Link
Adam BrooksMarlies de Toronto (TOR)C231996-05-06No174 Lbs5 ft11NoNoNo2Pro & Farm759,167$0$0$No759,167$Link
Adam CracknellMarlies de Toronto (TOR)RW341985-07-15No220 Lbs6 ft4NoNoNo1Pro & Farm650,000$0$0$NoLink
Adam McQuaidMarlies de Toronto (TOR)D331986-10-12No212 Lbs6 ft5NoNoNo1Pro & Farm2,750,000$0$0$NoLink
Ben HarpurMarlies de Toronto (TOR)D251995-01-12No222 Lbs6 ft6NoNoNo1Pro & Farm0$0$NoLink
Cal O'ReillyMarlies de Toronto (TOR)C331986-09-30No188 Lbs6 ft0NoNoNo1Pro & Farm700,000$0$0$NoLink
Cam WardMarlies de Toronto (TOR)G351984-02-29No194 Lbs6 ft1NoNoNo1Pro & Farm3,000,000$0$0$NoLink
Chris KunitzMarlies de Toronto (TOR)LW/RW401979-09-26No195 Lbs6 ft0NoNoNo1Pro & Farm1,000,000$0$0$NoLink
Craig AndersonMarlies de Toronto (TOR)G381981-05-21No185 Lbs6 ft2NoNoNo2Pro & Farm1,000,000$0$0$No1,000,000$Link
Drew StaffordMarlies de Toronto (TOR)LW/RW341985-10-30No215 Lbs6 ft2NoNoNo1Pro & Farm810,000$0$0$NoLink
Frederik GauthierMarlies de Toronto (TOR)C241995-04-26No238 Lbs6 ft5NoNoNo2Pro & Farm675,000$0$0$No675,000$Link
Jeremy BraccoMarlies de Toronto (TOR)RW221997-03-17No180 Lbs5 ft9NoNoNo2Pro & Farm842,500$0$0$No842,500$Link
Kasimir KaskisuoMarlies de Toronto (TOR)G261993-10-01No201 Lbs6 ft2NoNoNo2Pro & Farm675,000$0$0$No675,000$Link
Lee StempniakMarlies de Toronto (TOR)RW361983-02-03No195 Lbs5 ft11NoNoNo1Pro & Farm2,500,000$0$0$NoLink
Luca SbisaMarlies de Toronto (TOR)D291990-01-30No209 Lbs6 ft2NoNoNo1Pro & Farm1,500,000$0$0$NoLink
Mason MarchmentMarlies de Toronto (TOR)LW241995-03-06No204 Lbs6 ft4NoNoNo2Pro & Farm767,500$0$0$No767,500$Link
Matt MoulsonMarlies de Toronto (TOR)LW361983-11-01No200 Lbs6 ft1NoNoNo1Pro & Farm5,000,000$0$0$NoLink
Morgan GeekieMarlies de Toronto (TOR)C/RW211998-07-20Yes179 Lbs6 ft2NoNoNo3Pro & Farm763,333$0$0$No763,333$763,333$Link
Patrik BerglundMarlies de Toronto (TOR)C/LW311988-06-02No219 Lbs6 ft4NoNoNo5Pro & Farm3,850,000$0$0$No3,850,000$3,850,000$3,850,000$3,850,000$Link
Peter HollandMarlies de Toronto (TOR)C281991-01-14No205 Lbs6 ft2NoNoNo1Pro & Farm675,000$0$0$NoLink
Pierre EngvallMarlies de Toronto (TOR)LW/RW231996-05-31Yes192 Lbs6 ft4NoNoNo2Pro & Farm925,000$0$0$No925,000$Link
Ryan SproulMarlies de Toronto (TOR)D271993-01-12No205 Lbs6 ft4NoNoNo1Pro & Farm575,000$0$0$NoLink
Trevor MooreMarlies de Toronto (TOR)LW/RW241995-03-31No170 Lbs5 ft9NoNoNo1Pro & Farm925,000$0$0$NoLink
Tyler GaudetMarlies de Toronto (TOR)C261993-03-04No205 Lbs6 ft3NoNoNo1Pro & Farm650,000$0$0$NoLink
Victor OlofssonMarlies de Toronto (TOR)LW/RW241995-07-18Yes172 Lbs5 ft11NoNoNo2Pro & Farm767,500$0$0$No767,500$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2528.72198 Lbs6 ft21.601,300,767$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Matt MoulsonCal O'ReillyAdam Cracknell40122
2Patrik BerglundPeter HollandLee Stempniak30122
3Drew StaffordFrederik GauthierChris Kunitz20122
4Victor OlofssonMorgan GeekieJeremy Bracco10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben HarpurAdam McQuaid40122
2Ryan SproulLuca Sbisa30122
3Ben HarpurAdam McQuaid20122
4Ryan SproulLuca Sbisa10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Matt MoulsonCal O'ReillyAdam Cracknell60122
2Patrik BerglundPeter HollandLee Stempniak40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben HarpurAdam McQuaid60122
2Ryan SproulLuca Sbisa40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Matt MoulsonCal O'Reilly60122
2Adam CracknellPeter Holland40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben HarpurAdam McQuaid60122
2Ryan SproulLuca Sbisa40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Matt Moulson60122Ben HarpurAdam McQuaid60122
2Cal O'Reilly40122Ryan SproulLuca Sbisa40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Matt MoulsonCal O'Reilly60122
2Adam CracknellPeter Holland40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben HarpurAdam McQuaid60122
2Ryan SproulLuca Sbisa40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Matt MoulsonCal O'ReillyAdam CracknellBen HarpurAdam McQuaid
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Matt MoulsonCal O'ReillyAdam CracknellBen HarpurAdam McQuaid
Extra Forwards
Normal PowerPlayPenalty Kill
Tyler Gaudet, Trevor Moore, Drew StaffordTyler Gaudet, Trevor MooreDrew Stafford
Extra Defensemen
Normal PowerPlayPenalty Kill
Ben Harpur, Adam McQuaid, Ryan SproulBen HarpurAdam McQuaid, Ryan Sproul
Penalty Shots
Matt Moulson, Cal O'Reilly, Adam Cracknell, Peter Holland, Patrik Berglund
Goalie
#1 : Craig Anderson, #2 : Cam Ward
Custom OT Lines Forwards
Matt Moulson, Cal O'Reilly, Adam Cracknell, Peter Holland, Patrik Berglund, Lee Stempniak, Lee Stempniak, Drew Stafford, Chris Kunitz, Jeremy Bracco, Frederik Gauthier
Custom OT Lines Defensemen
Ben Harpur, Adam McQuaid, Ryan Sproul, Luca Sbisa,


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans de Rochester3300000052133922000000437361100000096361.00052741260027317112921226706065161111945644911545.45%12375.00%152982963.81%49382959.47%800132960.20%1173832967309624332
2Barracuda de San José1100000010371100000010370000000000021.000101323002731711292436706065161126338242150.00%5180.00%052982963.81%49382959.47%800132960.20%1173832967309624332
3Bears de Hershey21100000191721100000012931010000078-120.5001930490027317112928267060651611802954369555.56%17947.06%252982963.81%49382959.47%800132960.20%1173832967309624332
4Bruins de Providence 321000003421132200000033112210100000110-940.667344983002731711292135670606516118832715112650.00%18666.67%352982963.81%49382959.47%800132960.20%1173832967309624332
5Checkers de Charlotte10100000815-710100000815-70000000000000.0008132100273171129237670606516112993198225.00%3166.67%052982963.81%49382959.47%800132960.20%1173832967309624332
6Comets d'Utica1100000012750000000000011000000127521.000121830002731711292456706065161139171195360.00%330.00%052982963.81%49382959.47%800132960.20%1173832967309624332
7Condors de Bakersfield22000000311021110000002041611000000116541.00031467700273171129278670606516114916231611763.64%40100.00%052982963.81%49382959.47%800132960.20%1173832967309624332
8Crunch de Syracuse1100000012661100000012660000000000021.000122133002731711292456706065161129455169555.56%5180.00%052982963.81%49382959.47%800132960.20%1173832967309624332
9Devils de Binghamton10100000718-110000000000010100000718-1100.00071017002731711292346706065161135213195360.00%3166.67%052982963.81%49382959.47%800132960.20%1173832967309624332
10Eagles du Colorado202000001222-1010100000813-51010000049-500.00012152700273171129264670606516116119963914642.86%13746.15%052982963.81%49382959.47%800132960.20%1173832967309624332
11Griffins de Grand Rapids3210000042251711000000231112211000001914540.667426610800273171129210567060651611134541525611872.73%261446.15%152982963.81%49382959.47%800132960.20%1173832967309624332
12Heat de Stockton110000001201200000000000110000001201221.000121729012731711292466706065161118622202150.00%60100.00%052982963.81%49382959.47%800132960.20%1173832967309624332
13IceHogs de Rockford110000001941500000000000110000001941521.000192342002731711292386706065161113716176350.00%30100.00%052982963.81%49382959.47%800132960.20%1173832967309624332
14Monsters de Cleveland220000002872111000000233201100000054141.00028507800273171129276670606516116024485114750.00%9277.78%252982963.81%49382959.47%800132960.20%1173832967309624332
15Moose du Manitoba2110000030161411000000237161010000079-220.5003043730027317112927567060651611603314227228.57%2150.00%052982963.81%49382959.47%800132960.20%1173832967309624332
16Penguins de Wilkes-Barre/Scranton110000001715200000000000110000001715221.0001724410027317112924667060651611301618134250.00%4325.00%052982963.81%49382959.47%800132960.20%1173832967309624332
17Phantoms de Lehigh Valley3300000026179110000001110122000000157861.000263965002731711292119670606516111495282519333.33%21861.90%152982963.81%49382959.47%800132960.20%1173832967309624332
18Rampage de San Antonio211000001816211000000104610100000812-420.50018274500273171129272670606516117228693510660.00%12650.00%152982963.81%49382959.47%800132960.20%1173832967309624332
19Reign d'Ontario10000010871100000108710000000000021.00081220002731711292436706065161144231220300.00%6266.67%152982963.81%49382959.47%800132960.20%1173832967309624332
20Roadrunners de Tucson1100000010550000000000011000000105521.0001016260027317112923967060651611271216287114.29%3166.67%052982963.81%49382959.47%800132960.20%1173832967309624332
21Rocket de Laval202000001125-1410100000411-710100000714-700.000111829002731711292736706065161189401032813430.77%141028.57%052982963.81%49382959.47%800132960.20%1173832967309624332
22Senators de Belleville10100000913-410100000913-40000000000000.00091221002731711292466706065161145152879888.89%4250.00%052982963.81%49382959.47%800132960.20%1173832967309624332
23Sound Tigers de Bridgeport2200000027198110000001495110000001310341.00027386500273171129282670606516118235412610550.00%8450.00%052982963.81%49382959.47%800132960.20%1173832967309624332
24Thunderbirds de Springfield11000000734000000000001100000073421.00071219002731711292356706065161124845228337.50%10280.00%152982963.81%49382959.47%800132960.20%1173832967309624332
Total4631140001057437420022174000103321651672414100000024220933640.69657485314270127317112921798670606516111598620130575022411250.00%24610358.13%1552982963.81%49382959.47%800132960.20%1173832967309624332
26Wild de l'Iowa2110000022220110000001174101000001115-420.5002235570027317112927167060651611622021349444.44%8450.00%052982963.81%49382959.47%800132960.20%1173832967309624332
27Wolfpack de Hartford220000005614421100000028721110000002872141.00056771330027317112926967060651611581968307457.14%90100.00%052982963.81%49382959.47%800132960.20%1173832967309624332
28Wolves de Chicago21100000353411100000022814101000001326-1320.5003555900027317112927867060651611763376329888.89%181233.33%252982963.81%49382959.47%800132960.20%1173832967309624332
_Since Last GM Reset4631140001057437420022174000103321651672414100000024220933640.69657485314270127317112921798670606516111598620130575022411250.00%24610358.13%1552982963.81%49382959.47%800132960.20%1173832967309624332
_Vs Conference2820800000355228127141130000022011210814950000013511619400.71435553388800273171129211066706065161110514038914541397050.36%1636659.51%1152982963.81%49382959.47%800132960.20%1173832967309624332
_Vs Division14950000016710661862000001245965633000004347-4180.64316725241900273171129256167060651611528198518229733953.42%893857.30%652982963.81%49382959.47%800132960.20%1173832967309624332

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4664W4574853142717981598620130575001
All Games
GPWLOTWOTL SOWSOLGFGA
4631140010574374
Home Games
GPWLOTWOTL SOWSOLGFGA
221740010332165
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2414100000242209
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
22411250.00%24610358.13%15
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
670606516112731711292
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
52982963.81%49382959.47%800132960.20%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1173832967309624332


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-08-163Senators de Belleville13Marlies de Toronto9LBoxScore
3 - 2019-08-1813Marlies de Toronto5Monsters de Cleveland4WBoxScore
4 - 2019-08-1929Rocket de Laval11Marlies de Toronto4LBoxScore
6 - 2019-08-2135Rampage de San Antonio4Marlies de Toronto10WBoxScore
9 - 2019-08-2456Crunch de Syracuse6Marlies de Toronto12WBoxScore
11 - 2019-08-2666Marlies de Toronto12Griffins de Grand Rapids4WBoxScore
14 - 2019-08-2988Wild de l'Iowa7Marlies de Toronto11WBoxScore
15 - 2019-08-3097Marlies de Toronto7Bears de Hershey8LBoxScore
18 - 2019-09-02123Bruins de Providence 4Marlies de Toronto13WBoxScore
20 - 2019-09-04132Monsters de Cleveland3Marlies de Toronto23WBoxScore
21 - 2019-09-05133Marlies de Toronto1Bruins de Providence 10LBoxScore
24 - 2019-09-08158Barracuda de San José3Marlies de Toronto10WBoxScore
25 - 2019-09-09166Marlies de Toronto7Rocket de Laval14LBoxScore
28 - 2019-09-12187Bears de Hershey9Marlies de Toronto12WBoxScore
32 - 2019-09-16214Marlies de Toronto7Phantoms de Lehigh Valley3WBoxScore
35 - 2019-09-19232Reign d'Ontario7Marlies de Toronto8WXXBoxScore
37 - 2019-09-21247Wolves de Chicago8Marlies de Toronto22WBoxScore
39 - 2019-09-23261Phantoms de Lehigh Valley10Marlies de Toronto11WBoxScore
40 - 2019-09-24265Marlies de Toronto19IceHogs de Rockford4WBoxScore
43 - 2019-09-27283Marlies de Toronto13Sound Tigers de Bridgeport10WBoxScore
45 - 2019-09-29297Bruins de Providence 7Marlies de Toronto20WBoxScore
46 - 2019-09-30309Marlies de Toronto17Penguins de Wilkes-Barre/Scranton15WBoxScore
49 - 2019-10-03330Marlies de Toronto13Wolves de Chicago26LBoxScore
51 - 2019-10-05333Marlies de Toronto10Roadrunners de Tucson5WBoxScore
53 - 2019-10-07350Marlies de Toronto4Eagles du Colorado9LBoxScore
57 - 2019-10-11381Marlies de Toronto7Griffins de Grand Rapids10LBoxScore
59 - 2019-10-13393Marlies de Toronto9Americans de Rochester6WBoxScore
60 - 2019-10-14415Americans de Rochester4Marlies de Toronto11WBoxScore
63 - 2019-10-17430Marlies de Toronto8Phantoms de Lehigh Valley4WBoxScore
64 - 2019-10-18437Eagles du Colorado13Marlies de Toronto8LBoxScore
67 - 2019-10-21460Marlies de Toronto8Rampage de San Antonio12LBoxScore
70 - 2019-10-24481Marlies de Toronto12Comets d'Utica7WBoxScore
72 - 2019-10-26490Marlies de Toronto12Heat de Stockton0WBoxScore
74 - 2019-10-28504Marlies de Toronto11Condors de Bakersfield6WBoxScore
77 - 2019-10-31531Americans de Rochester3Marlies de Toronto32WBoxScore
80 - 2019-11-03551Marlies de Toronto28Wolfpack de Hartford7WBoxScore
81 - 2019-11-04562Griffins de Grand Rapids11Marlies de Toronto23WBoxScore
83 - 2019-11-06578Checkers de Charlotte15Marlies de Toronto8LBoxScore
87 - 2019-11-10587Marlies de Toronto7Devils de Binghamton18LBoxScore
88 - 2019-11-11599Wolfpack de Hartford7Marlies de Toronto28WBoxScore
91 - 2019-11-14622Marlies de Toronto11Wild de l'Iowa15LBoxScore
93 - 2019-11-16638Marlies de Toronto7Moose du Manitoba9LBoxScore
95 - 2019-11-18650Sound Tigers de Bridgeport9Marlies de Toronto14WBoxScore
97 - 2019-11-20662Condors de Bakersfield4Marlies de Toronto20WBoxScore
99 - 2019-11-22677Moose du Manitoba7Marlies de Toronto23WBoxScore
103 - 2019-11-26705Marlies de Toronto7Thunderbirds de Springfield3WBoxScore
105 - 2019-11-28723Devils de Binghamton-Marlies de Toronto-
107 - 2019-11-30737Heat de Stockton-Marlies de Toronto-
109 - 2019-12-02753IceHogs de Rockford-Marlies de Toronto-
118 - 2019-12-11770Marlies de Toronto-Admirals de Milwaukee-
120 - 2019-12-13777Marlies de Toronto-Stars du Texas-
123 - 2019-12-16804Senators de Belleville-Marlies de Toronto-
125 - 2019-12-18811Thunderbirds de Springfield-Marlies de Toronto-
127 - 2019-12-20826Marlies de Toronto-Wolfpack de Hartford-
129 - 2019-12-22842Gulls de San Diego-Marlies de Toronto-
130 - 2019-12-23847Marlies de Toronto-Rocket de Laval-
133 - 2019-12-26875Roadrunners de Tucson-Marlies de Toronto-
135 - 2019-12-28889Stars du Texas-Marlies de Toronto-
137 - 2019-12-30902Marlies de Toronto-Senators de Belleville-
138 - 2019-12-31906Marlies de Toronto-Americans de Rochester-
140 - 2020-01-02924Marlies de Toronto-Penguins de Wilkes-Barre/Scranton-
142 - 2020-01-04938Penguins de Wilkes-Barre/Scranton-Marlies de Toronto-
144 - 2020-01-06956Checkers de Charlotte-Marlies de Toronto-
147 - 2020-01-09979Marlies de Toronto-Crunch de Syracuse-
Trade Deadline --- Trades can’t be done after this day is simulated!
149 - 2020-01-11986Marlies de Toronto-Thunderbirds de Springfield-
151 - 2020-01-131010Comets d'Utica-Marlies de Toronto-
154 - 2020-01-161025Marlies de Toronto-Barracuda de San José-
156 - 2020-01-181036Marlies de Toronto-Reign d'Ontario-
157 - 2020-01-191043Marlies de Toronto-Gulls de San Diego-
161 - 2020-01-231077Crunch de Syracuse-Marlies de Toronto-
163 - 2020-01-251091Admirals de Milwaukee-Marlies de Toronto-
165 - 2020-01-271099Marlies de Toronto-Bruins de Providence -
168 - 2020-01-301129Devils de Binghamton-Marlies de Toronto-
170 - 2020-02-011145Sound Tigers de Bridgeport-Marlies de Toronto-
172 - 2020-02-031162Monsters de Cleveland-Marlies de Toronto-
174 - 2020-02-051174Thunderbirds de Springfield-Marlies de Toronto-
176 - 2020-02-071188Marlies de Toronto-Crunch de Syracuse-
177 - 2020-02-081192Marlies de Toronto-Checkers de Charlotte-
179 - 2020-02-101213Marlies de Toronto-Senators de Belleville-
182 - 2020-02-131238Marlies de Toronto-Bears de Hershey-
184 - 2020-02-151253Griffins de Grand Rapids-Marlies de Toronto-
186 - 2020-02-171270Rocket de Laval-Marlies de Toronto-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
19 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 3,251,917$ 3,251,917$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 82 17,483$ 1,433,606$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
146311400010574374200221740001033216516724141000000242209336457485314270127317112921798670606516111598620130575022411250.00%24610358.13%1552982963.81%49382959.47%800132960.20%1173832967309624332
Total Regular Season46311400010574374200221740001033216516724141000000242209336457485314270127317112921798670606516111598620130575022411250.00%24610358.13%1552982963.81%49382959.47%800132960.20%1173832967309624332