Moose du Manitoba

GP: 46 | W: 17 | L: 29 | OTL: 0 | P: 34
GF: 238 | GA: 314 | PP%: 27.05% | PK%: 61.07%
GM : Ludo Toffoli | Morale : 40 | Team Overall : 59
Next Games #724 vs Comets d'Utica
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Garrett WilsonXX98.008869886574488657386156786357576440620
2Mason AppletonXX98.007143967472519260256558602547476440600
3Michael SpacekX99.007367876767818857715951624844446140590
4Jansen HarkinsX99.007368846768727756705057635448486140580
5JC LiponX100.006067446567768158505357565447475840570
6C.J. Suess (R)X99.007669926069575757504762635944446140560
7Skyler McKenzie (R)X100.006761826061727754504756585344445840550
8Cameron SchillingX100.007469856669788554254941643955555640610
9Anthony BitettoX99.008746897077595656254847607561625840600
10Tucker PoolmanX100.007973927573555556255245654345465840590
11Nelson NogierX100.007572836572576145253539603744445040550
12Luke Green (R)X100.007169756469414048253842594044445040520
Scratches
1Jacob Cederholm (R)XS17672866972474941252839593744444840530
TEAM AVERAGE99.38756583677061705439495062484848574057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Roberto Luongo100.00646972846661566564647887916440670
2Mikhail Berdin (R)100.00676379636972637171693044446740640
Scratches
1Eric Comrie100.00637189656367536561593044446240600
TEAM AVERAGE100.0065688071666757676564465860644064
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Pascal Vincent49697541504154CAN431500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Michael SpacekMoose du Manitoba (WPG)C4636731092020063702026313517.82%4978717.12971628781011211059.63%75813351052.7700000183
2JC LiponMoose du Manitoba (WPG)RW31742296-6922064432166814534.26%3867121.6725833571160000165154.55%44129510112.8600112621
3Tucker PoolmanMoose du Manitoba (WPG)D462437612013510568831851078812.97%10973515.9926816510002482040.00%547102011.6600786126
4C.J. SuessMoose du Manitoba (WPG)LW265196021002117124458241.13%1735713.733035310002125150.00%206218083.3600000721
5Luke GreenMoose du Manitoba (WPG)D46101626-184315585213361827.52%7349910.8700004000014000.00%23650021.0400111001
6Anthony BitettoMoose du Manitoba (WPG)D1541721-717530226836355.88%4040827.20412163166000161100.00%01843001.0300010111
7Skyler McKenzieMoose du Manitoba (WPG)C4617421-580122565213726.15%72615.682024151012182051.74%2014511001.6100000100
8Jacob CederholmMoose du Manitoba (WPG)D3401717-17916538337652440.00%4839611.660111900003000.00%11232000.8600553000
9Garrett WilsonMoose du Manitoba (WPG)LW/RW106915-2200193123102626.09%1523623.673478330112421040.54%74812011.2700000100
10Mason AppletonMoose du Manitoba (WPG)C/RW1041115-320111031173012.90%523923.983585320002480024.82%137308001.2500000010
11Nelson NogierMoose du Manitoba (WPG)D27211133714535307220302.78%3241615.430221230000132000.00%01432000.6200135000
12Jansen HarkinsMoose du Manitoba (WPG)C149413-13260232651103917.65%1130221.5941512370000130060.00%75236010.8600000001
13Cameron SchillingMoose du Manitoba (WPG)D13178-17423016283919192.56%3134726.6913413520000540050.00%2418000.4600132001
Team Total or Average364238237475-24567285458470128552979218.52%475566015.5556491051925592131338617253.22%13195614340291.6800162219181615
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Roberto LuongoMoose du Manitoba (WPG)26101500.8645.40122320110806497300.0000260111
2Mikhail BerdinMoose du Manitoba (WPG)277900.8595.39125700113803470100.00001642101
Team Total or Average53172400.8615.392481202231609967400.00004242212


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Anthony BitettoMoose du Manitoba (WPG)D291990-07-14No210 Lbs6 ft1NoNoNo1Pro & Farm650,000$0$0$NoLink
C.J. SuessMoose du Manitoba (WPG)LW251994-03-17Yes190 Lbs5 ft11NoNoNo1Pro & Farm792,500$0$0$NoLink
Cameron SchillingMoose du Manitoba (WPG)D311988-10-07No182 Lbs6 ft2NoNoNo1Pro & Farm650,000$0$0$NoLink
Eric ComrieMoose du Manitoba (WPG)G241995-07-05No175 Lbs6 ft1NoNoNo1Pro & Farm650,000$0$0$NoLink
Garrett WilsonMoose du Manitoba (WPG)LW/RW281991-03-16No199 Lbs6 ft2NoNoNo1Pro & Farm650,000$0$0$NoLink
JC LiponMoose du Manitoba (WPG)RW261993-07-10No183 Lbs6 ft0NoNoNo1Pro & Farm650,000$0$0$NoLink
Jacob CederholmMoose du Manitoba (WPG)D211998-01-30Yes187 Lbs6 ft4NoNoNo1Pro & Farm575,000$0$0$NoLink
Jansen HarkinsMoose du Manitoba (WPG)C221997-05-23No182 Lbs6 ft1NoNoNo2Pro & Farm767,500$0$0$No767,500$Link
Luke GreenMoose du Manitoba (WPG)D221998-01-11Yes188 Lbs6 ft1NoNoNo3Pro & Farm745,000$0$0$No745,000$745,000$Link
Mason AppletonMoose du Manitoba (WPG)C/RW231996-01-15No193 Lbs6 ft2NoNoNo2Pro & Farm741,667$0$0$No741,667$Link
Michael SpacekMoose du Manitoba (WPG)C221997-04-09No187 Lbs5 ft11NoNoNo2Pro & Farm750,000$0$0$No750,000$Link
Mikhail BerdinMoose du Manitoba (WPG)G211998-02-28Yes163 Lbs6 ft2NoNoNo3Pro & Farm758,333$0$0$No758,333$758,333$Link
Nelson NogierMoose du Manitoba (WPG)D231996-05-26No191 Lbs6 ft2NoNoNo1Pro & Farm713,333$0$0$NoLink
Roberto LuongoMoose du Manitoba (WPG)G401979-04-04No217 Lbs6 ft3NoNoNo4Pro & Farm5,333,333$0$0$No5,333,333$5,333,333$5,333,333$Link
Skyler McKenzieMoose du Manitoba (WPG)C211998-01-20Yes170 Lbs5 ft9NoNoNo3Pro & Farm741,666$0$0$No741,666$741,666$Link
Tucker PoolmanMoose du Manitoba (WPG)D261993-06-08No199 Lbs6 ft2NoNoNo3Pro & Farm775,000$0$0$No775,000$775,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1625.25189 Lbs6 ft11.88996,458$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Garrett WilsonMason AppletonJC Lipon40122
2C.J. SuessMichael SpacekJansen Harkins30122
3Garrett WilsonJansen HarkinsMason Appleton20122
4Michael SpacekSkyler McKenzieJC Lipon10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Cameron SchillingAnthony Bitetto40122
2Tucker PoolmanNelson Nogier30122
3Luke GreenCameron Schilling20122
4Anthony BitettoTucker Poolman10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Garrett WilsonMason AppletonJC Lipon60122
2C.J. SuessMichael SpacekJansen Harkins40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Cameron SchillingAnthony Bitetto60122
2Tucker PoolmanNelson Nogier40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Garrett WilsonMason Appleton60122
2Michael SpacekJansen Harkins40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Cameron SchillingAnthony Bitetto60122
2Tucker PoolmanNelson Nogier40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Garrett Wilson60122Cameron SchillingAnthony Bitetto60122
2Mason Appleton40122Tucker PoolmanNelson Nogier40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Garrett WilsonMason Appleton60122
2Michael SpacekJansen Harkins40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Cameron SchillingAnthony Bitetto60122
2Tucker PoolmanNelson Nogier40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Garrett WilsonMason AppletonJC LiponCameron SchillingAnthony Bitetto
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Garrett WilsonMason AppletonJC LiponCameron SchillingAnthony Bitetto
Extra Forwards
Normal PowerPlayPenalty Kill
Skyler McKenzie, C.J. Suess, JC LiponSkyler McKenzie, C.J. SuessJC Lipon
Extra Defensemen
Normal PowerPlayPenalty Kill
Luke Green, Nelson Nogier, Cameron SchillingLuke GreenNelson Nogier, Cameron Schilling
Penalty Shots
Garrett Wilson, Mason Appleton, Michael Spacek, Jansen Harkins, JC Lipon
Goalie
#1 : Roberto Luongo, #2 : Mikhail Berdin
Custom OT Lines Forwards
Garrett Wilson, Mason Appleton, Michael Spacek, Jansen Harkins, JC Lipon, C.J. Suess, C.J. Suess, Skyler McKenzie, , ,
Custom OT Lines Defensemen
Cameron Schilling, Anthony Bitetto, Tucker Poolman, Nelson Nogier, Luke Green


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Total46172900000238314-762211110000012411772461800000114197-83340.3702383555930096895301440497503440017867276706062075627.05%1495861.07%234873947.09%40288845.27%39688544.75%10307271134326594285
_Since Last GM Reset46172900000238314-762211110000012411772461800000114197-83340.3702383555930096895301440497503440017867276706062075627.05%1495861.07%234873947.09%40288845.27%39688544.75%10307271134326594285
_Vs Conference27111600000137167-301367000006865314590000069102-33220.407137202339009689530892497503440010684203223681223125.41%803457.50%134873947.09%40288845.27%39688544.75%10307271134326594285
_Vs Division1578000008897-97430000043358835000004562-17140.467881292170096895305284975034400612235183213621829.03%481960.42%034873947.09%40288845.27%39688544.75%10307271134326594285

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4634L52383555931440178672767060600
All Games
GPWLOTWOTL SOWSOLGFGA
4617290000238314
Home Games
GPWLOTWOTL SOWSOLGFGA
2211110000124117
Visitor Games
GPWLOTWOTL SOWSOLGFGA
246180000114197
Last 10 Games
WLOTWOTL SOWSOL
460000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2075627.05%1495861.07%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
49750344009689530
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
34873947.09%40288845.27%39688544.75%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
10307271134326594285


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2019-08-1710Moose du Manitoba10Wolfpack de Hartford3WBoxScore
3 - 2019-08-1814Moose du Manitoba1Devils de Binghamton10LBoxScore
5 - 2019-08-2033Moose du Manitoba0Sound Tigers de Bridgeport5LBoxScore
7 - 2019-08-2241Moose du Manitoba3Penguins de Wilkes-Barre/Scranton7LBoxScore
9 - 2019-08-2457Wild de l'Iowa8Moose du Manitoba1LBoxScore
11 - 2019-08-2663Moose du Manitoba4IceHogs de Rockford2WBoxScore
12 - 2019-08-2777Penguins de Wilkes-Barre/Scranton8Moose du Manitoba4LBoxScore
14 - 2019-08-2991Roadrunners de Tucson8Moose du Manitoba2LBoxScore
16 - 2019-08-31106Sound Tigers de Bridgeport6Moose du Manitoba5LBoxScore
19 - 2019-09-03128Condors de Bakersfield6Moose du Manitoba2LBoxScore
21 - 2019-09-05142Reign d'Ontario8Moose du Manitoba1LBoxScore
25 - 2019-09-09169Heat de Stockton1Moose du Manitoba12WBoxScore
28 - 2019-09-12179Moose du Manitoba4Gulls de San Diego3WBoxScore
31 - 2019-09-15201Moose du Manitoba1Barracuda de San José6LBoxScore
32 - 2019-09-16217Moose du Manitoba8Wolves de Chicago7WBoxScore
35 - 2019-09-19234Devils de Binghamton1Moose du Manitoba5WBoxScore
38 - 2019-09-22251Comets d'Utica5Moose du Manitoba3LBoxScore
40 - 2019-09-24269Stars du Texas1Moose du Manitoba11WBoxScore
42 - 2019-09-26280Eagles du Colorado13Moose du Manitoba1LBoxScore
44 - 2019-09-28289Moose du Manitoba2Thunderbirds de Springfield4LBoxScore
46 - 2019-09-30312Moose du Manitoba6Crunch de Syracuse13LBoxScore
49 - 2019-10-03326Moose du Manitoba2Admirals de Milwaukee22LBoxScore
51 - 2019-10-05338Moose du Manitoba2Stars du Texas3LBoxScore
53 - 2019-10-07360Monsters de Cleveland5Moose du Manitoba3LBoxScore
57 - 2019-10-11387Moose du Manitoba3Barracuda de San José6LBoxScore
59 - 2019-10-13391Moose du Manitoba5Gulls de San Diego8LBoxScore
60 - 2019-10-14409Moose du Manitoba3Reign d'Ontario10LBoxScore
63 - 2019-10-17433Stars du Texas2Moose du Manitoba4WBoxScore
65 - 2019-10-19442Moose du Manitoba12Stars du Texas1WBoxScore
68 - 2019-10-22467Gulls de San Diego2Moose du Manitoba5WBoxScore
70 - 2019-10-24483Griffins de Grand Rapids7Moose du Manitoba14WBoxScore
72 - 2019-10-26491Moose du Manitoba3Griffins de Grand Rapids4LBoxScore
75 - 2019-10-29518Phantoms de Lehigh Valley1Moose du Manitoba3WBoxScore
77 - 2019-10-31534Checkers de Charlotte8Moose du Manitoba2LBoxScore
79 - 2019-11-02547IceHogs de Rockford1Moose du Manitoba13WBoxScore
81 - 2019-11-04558Moose du Manitoba3Wild de l'Iowa11LBoxScore
83 - 2019-11-06581Rocket de Laval9Moose du Manitoba11WBoxScore
87 - 2019-11-10591Rampage de San Antonio3Moose du Manitoba12WBoxScore
89 - 2019-11-12610Moose du Manitoba15Rampage de San Antonio5WBoxScore
91 - 2019-11-14618Moose du Manitoba6Eagles du Colorado7LBoxScore
93 - 2019-11-16638Marlies de Toronto7Moose du Manitoba9WBoxScore
95 - 2019-11-18646Moose du Manitoba1Wild de l'Iowa11LBoxScore
97 - 2019-11-20660Moose du Manitoba6Rocket de Laval16LBoxScore
99 - 2019-11-22677Moose du Manitoba7Marlies de Toronto23LBoxScore
100 - 2019-11-23679Moose du Manitoba7Bruins de Providence 10LBoxScore
103 - 2019-11-26708Admirals de Milwaukee7Moose du Manitoba1LBoxScore
105 - 2019-11-28724Comets d'Utica-Moose du Manitoba-
108 - 2019-12-01742Crunch de Syracuse-Moose du Manitoba-
110 - 2019-12-03756Moose du Manitoba-IceHogs de Rockford-
112 - 2019-12-05762Moose du Manitoba-Checkers de Charlotte-
113 - 2019-12-06766Moose du Manitoba-Monsters de Cleveland-
122 - 2019-12-15791Bruins de Providence -Moose du Manitoba-
123 - 2019-12-16805Rampage de San Antonio-Moose du Manitoba-
126 - 2019-12-19823Admirals de Milwaukee-Moose du Manitoba-
128 - 2019-12-21837Moose du Manitoba-Rampage de San Antonio-
130 - 2019-12-23853Senators de Belleville-Moose du Manitoba-
131 - 2019-12-24859IceHogs de Rockford-Moose du Manitoba-
133 - 2019-12-26876Wolfpack de Hartford-Moose du Manitoba-
136 - 2019-12-29894Barracuda de San José-Moose du Manitoba-
138 - 2019-12-31914IceHogs de Rockford-Moose du Manitoba-
140 - 2020-01-02926Reign d'Ontario-Moose du Manitoba-
142 - 2020-01-04936Moose du Manitoba-Senators de Belleville-
144 - 2020-01-06954Moose du Manitoba-Phantoms de Lehigh Valley-
145 - 2020-01-07960Moose du Manitoba-Americans de Rochester-
147 - 2020-01-09980Moose du Manitoba-Bears de Hershey-
Trade Deadline --- Trades can’t be done after this day is simulated!
149 - 2020-01-11993Bears de Hershey-Moose du Manitoba-
151 - 2020-01-131000Moose du Manitoba-Condors de Bakersfield-
154 - 2020-01-161028Americans de Rochester-Moose du Manitoba-
157 - 2020-01-191048Wolves de Chicago-Moose du Manitoba-
160 - 2020-01-221069Roadrunners de Tucson-Moose du Manitoba-
162 - 2020-01-241081Moose du Manitoba-Condors de Bakersfield-
165 - 2020-01-271102Moose du Manitoba-Heat de Stockton-
166 - 2020-01-281117Moose du Manitoba-Comets d'Utica-
168 - 2020-01-301131Thunderbirds de Springfield-Moose du Manitoba-
171 - 2020-02-021151Wild de l'Iowa-Moose du Manitoba-
173 - 2020-02-041166Moose du Manitoba-Stars du Texas-
175 - 2020-02-061179Moose du Manitoba-Admirals de Milwaukee-
178 - 2020-02-091204Eagles du Colorado-Moose du Manitoba-
180 - 2020-02-111223Wolves de Chicago-Moose du Manitoba-
182 - 2020-02-131229Moose du Manitoba-Heat de Stockton-
184 - 2020-02-151245Moose du Manitoba-Eagles du Colorado-
186 - 2020-02-171257Moose du Manitoba-Roadrunners de Tucson-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
19 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 1,594,333$ 1,594,333$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 82 8,572$ 702,904$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
146172900000238314-762211110000012411772461800000114197-83342383555930096895301440497503440017867276706062075627.05%1495861.07%234873947.09%40288845.27%39688544.75%10307271134326594285
Total Regular Season46172900000238314-762211110000012411772461800000114197-83342383555930096895301440497503440017867276706062075627.05%1495861.07%234873947.09%40288845.27%39688544.75%10307271134326594285