Moose du Manitoba

GP: 22 | W: 7 | L: 15 | OTL: 0 | P: 14
GF: 88 | GA: 147 | PP%: 10.87% | PK%: 64.29%
GM : Ludo Toffoli | Morale : 40 | Team Overall : 59
Next Games #338 vs Stars du Texas
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Garrett WilsonXX100.008869886574488657386156786357576440620
2Mason AppletonXX100.007143967472519260256558602547476440600
3Michael SpacekX100.007367876767818857715951624844446140590
4Jansen HarkinsX100.007368846768727756705057635448486140580
5JC LiponX100.006067446567768158505357565447475840570
6C.J. Suess (R)X100.007669926069575757504762635944446140560
7Skyler McKenzie (R)X100.006761826061727754504756585344445840550
8Cameron SchillingX100.007469856669788554254941643955555640610
9Anthony BitettoX100.008746897077595656254847607561625840600
10Tucker PoolmanX100.007973927573555556255245654345465840590
11Nelson NogierX100.007572836572576145253539603744445040550
12Luke Green (R)X100.007169756469414048253842594044445040520
Scratches
1Jacob Cederholm (R)X100.007672866972474941252839593744444840530
TEAM AVERAGE100.00756583677061705439495062484848574057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
1Roberto Luongo100.00646972846661566564647887916440670
2Mikhail Berdin (R)97.00676379636972637171693044446740640
3Eric Comrie100.00637189656367536561593044446240600
TEAM AVERAGE99.0065688071666757676564465860644064
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Pascal Vincent49697541504154CAN431500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Michael SpacekMoose du Manitoba (WPG)C2265258188020296519509.23%1733115.07033418000050060.31%3833915003.5000000041
2C.J. SuessMoose du Manitoba (WPG)LW224885620001415113337642.48%1528613.00303519000065152.63%194616083.9200000710
3Tucker PoolmanMoose du Manitoba (WPG)D22681438155292447352312.77%3333015.000222180000140025.00%42239000.8500443001
4Nelson NogierMoose du Manitoba (WPG)D2229114644033256717292.99%2532114.620111017000014000.00%01429000.6800035000
5Garrett WilsonMoose du Manitoba (WPG)LW/RW4639-140916741285.71%49122.793033100001141032.14%2833011.9700000100
6Mason AppletonMoose du Manitoba (WPG)C/RW4088-20046109100.00%29223.240221100001170027.08%4894001.7200000010
7Jansen HarkinsMoose du Manitoba (WPG)C7628-912016142021230.00%615422.07213615000040045.95%37124011.0400000001
8JC LiponMoose du Manitoba (WPG)RW7448-9200181035152611.43%316323.39134922000040154.55%11246000.9800000000
9Skyler McKenzieMoose du Manitoba (WPG)C22538-70051036111713.89%41275.8000016000061055.10%98214001.2500000100
10Luke GreenMoose du Manitoba (WPG)D224482311524286518376.15%4023210.570000000003000.00%11228010.6900111001
11Jacob CederholmMoose du Manitoba (WPG)D13077-4493517122115100.00%2214911.490000200000000.00%0215000.9400232000
12Cameron SchillingMoose du Manitoba (WPG)D7156-17757152815163.57%2019127.31134926000023000.00%1410000.6300010001
13Anthony BitettoMoose du Manitoba (WPG)D5011-11009810320.00%1013326.67011319000021000.00%018000.1500000000
Team Total or Average17988114202-1327615020521252419632016.79%201260514.561016265318800021367254.13%6302091810111.550071211965
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Roberto LuongoMoose du Manitoba (WPG)1661000.8495.837200070465284200.0000160001
2Mikhail BerdinMoose du Manitoba (WPG)121300.8665.305320047351195000.0000521001
Team Total or Average2871300.8575.61125200117816479200.00002121002


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Anthony BitettoMoose du Manitoba (WPG)D291990-07-14No210 Lbs6 ft1NoNoNo1UFAPro & Farm650,000$0$0$NoLink
C.J. SuessMoose du Manitoba (WPG)LW251994-03-17Yes190 Lbs5 ft11NoNoNo1RFAPro & Farm792,500$0$0$NoLink
Cameron SchillingMoose du Manitoba (WPG)D311988-10-07No182 Lbs6 ft2NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Eric ComrieMoose du Manitoba (WPG)G241995-07-05No175 Lbs6 ft1NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Garrett WilsonMoose du Manitoba (WPG)LW/RW281991-03-16No199 Lbs6 ft2NoNoNo1UFAPro & Farm650,000$0$0$NoLink
JC LiponMoose du Manitoba (WPG)RW261993-07-10No183 Lbs6 ft0NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Jacob CederholmMoose du Manitoba (WPG)D211998-01-30Yes187 Lbs6 ft4NoNoNo1ELCPro & Farm575,000$0$0$NoLink
Jansen HarkinsMoose du Manitoba (WPG)C221997-05-23No182 Lbs6 ft1NoNoNo2ELCPro & Farm767,500$0$0$NoLink
Luke GreenMoose du Manitoba (WPG)D211998-01-11Yes188 Lbs6 ft1NoNoNo3ELCPro & Farm745,000$0$0$NoLink
Mason AppletonMoose du Manitoba (WPG)C/RW231996-01-15No193 Lbs6 ft2NoNoNo2RFAPro & Farm741,667$0$0$NoLink
Michael SpacekMoose du Manitoba (WPG)C221997-04-09No187 Lbs5 ft11NoNoNo2ELCPro & Farm750,000$0$0$NoLink
Mikhail BerdinMoose du Manitoba (WPG)G211998-02-28Yes163 Lbs6 ft2NoNoNo3ELCPro & Farm758,333$0$0$NoLink
Nelson NogierMoose du Manitoba (WPG)D231996-05-26No191 Lbs6 ft2NoNoNo1RFAPro & Farm713,333$0$0$NoLink
Roberto LuongoMoose du Manitoba (WPG)G401979-04-04No217 Lbs6 ft3NoNoNo4UFAPro & Farm5,333,333$0$0$NoLink
Skyler McKenzieMoose du Manitoba (WPG)C211998-01-20Yes170 Lbs5 ft9NoNoNo3ELCPro & Farm741,666$0$0$NoLink
Tucker PoolmanMoose du Manitoba (WPG)D261993-06-08No199 Lbs6 ft2NoNoNo3RFAPro & Farm775,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1625.19189 Lbs6 ft11.88996,458$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2C.J. SuessMichael Spacek30122
320122
4Michael SpacekSkyler McKenzie10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Tucker PoolmanNelson Nogier30122
3Luke Green20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2C.J. SuessMichael Spacek40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Tucker PoolmanNelson Nogier40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Michael Spacek40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Tucker PoolmanNelson Nogier40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Tucker PoolmanNelson Nogier40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Michael Spacek40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Tucker PoolmanNelson Nogier40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
Skyler McKenzie, C.J. Suess, Skyler McKenzie, C.J. Suess
Extra Defensemen
Normal PowerPlayPenalty Kill
, Luke Green, Tucker PoolmanLuke Green, Tucker Poolman
Penalty Shots
, , Michael Spacek, ,
Goalie
#1 : , #2 :
Custom OT Lines Forwards
, , Michael Spacek, , , C.J. Suess, C.J. Suess, Skyler McKenzie, , ,
Custom OT Lines Defensemen
, , Tucker Poolman, Nelson Nogier,


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Total227150000088147-591138000004765-181147000004182-41140.318881272150030382006142112351680875345327289921010.87%562064.29%014332044.69%20543147.56%19941148.42%481337547161291137
_Since Last GM Reset227150000088147-591138000004765-181147000004182-41140.318881272150030382006142112351680875345327289921010.87%562064.29%014332044.69%20543147.56%19941148.42%481337547161291137
_Vs Conference1358000005290-38826000003350-17532000001940-21100.385527112300303820038321123516805352141341665535.45%271255.56%014332044.69%20543147.56%19941148.42%481337547161291137
_Vs Division523000001946-27312000001322-921100000624-1840.40019244300303820017121123516802268870752428.33%15660.00%014332044.69%20543147.56%19941148.42%481337547161291137

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2214L48812721561487534532728900
All Games
GPWLOTWOTL SOWSOLGFGA
22715000088147
Home Games
GPWLOTWOTL SOWSOLGFGA
113800004765
Visitor Games
GPWLOTWOTL SOWSOLGFGA
114700004182
Last 10 Games
WLOTWOTL SOWSOL
460000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
921010.87%562064.29%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
21123516803038200
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
14332044.69%20543147.56%19941148.42%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
481337547161291137


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2019-08-1710Moose du Manitoba10Wolfpack de Hartford3WBoxScore
3 - 2019-08-1814Moose du Manitoba1Devils de Binghamton10LBoxScore
5 - 2019-08-2033Moose du Manitoba0Sound Tigers de Bridgeport5LBoxScore
7 - 2019-08-2241Moose du Manitoba3Penguins de Wilkes-Barre/Scranton7LBoxScore
9 - 2019-08-2457Wild de l'Iowa8Moose du Manitoba1LBoxScore
11 - 2019-08-2663Moose du Manitoba4IceHogs de Rockford2WBoxScore
12 - 2019-08-2777Penguins de Wilkes-Barre/Scranton8Moose du Manitoba4LBoxScore
14 - 2019-08-2991Roadrunners de Tucson8Moose du Manitoba2LBoxScore
16 - 2019-08-31106Sound Tigers de Bridgeport6Moose du Manitoba5LBoxScore
19 - 2019-09-03128Condors de Bakersfield6Moose du Manitoba2LBoxScore
21 - 2019-09-05142Reign d'Ontario8Moose du Manitoba1LBoxScore
25 - 2019-09-09169Heat de Stockton1Moose du Manitoba12WBoxScore
28 - 2019-09-12179Moose du Manitoba4Gulls de San Diego3WBoxScore
31 - 2019-09-15201Moose du Manitoba1Barracuda de San José6LBoxScore
32 - 2019-09-16217Moose du Manitoba8Wolves de Chicago7WBoxScore
35 - 2019-09-19234Devils de Binghamton1Moose du Manitoba5WBoxScore
38 - 2019-09-22251Comets d'Utica5Moose du Manitoba3LBoxScore
40 - 2019-09-24269Stars du Texas1Moose du Manitoba11WBoxScore
42 - 2019-09-26280Eagles du Colorado13Moose du Manitoba1LBoxScore
44 - 2019-09-28289Moose du Manitoba2Thunderbirds de Springfield4LBoxScore
46 - 2019-09-30312Moose du Manitoba6Crunch de Syracuse13LBoxScore
49 - 2019-10-03326Moose du Manitoba2Admirals de Milwaukee22LBoxScore
51 - 2019-10-05338Moose du Manitoba-Stars du Texas-
53 - 2019-10-07360Monsters de Cleveland-Moose du Manitoba-
57 - 2019-10-11387Moose du Manitoba-Barracuda de San José-
59 - 2019-10-13391Moose du Manitoba-Gulls de San Diego-
60 - 2019-10-14409Moose du Manitoba-Reign d'Ontario-
63 - 2019-10-17433Stars du Texas-Moose du Manitoba-
65 - 2019-10-19442Moose du Manitoba-Stars du Texas-
68 - 2019-10-22467Gulls de San Diego-Moose du Manitoba-
70 - 2019-10-24483Griffins de Grand Rapids-Moose du Manitoba-
72 - 2019-10-26491Moose du Manitoba-Griffins de Grand Rapids-
75 - 2019-10-29518Phantoms de Lehigh Valley-Moose du Manitoba-
77 - 2019-10-31534Checkers de Charlotte-Moose du Manitoba-
79 - 2019-11-02547IceHogs de Rockford-Moose du Manitoba-
81 - 2019-11-04558Moose du Manitoba-Wild de l'Iowa-
83 - 2019-11-06581Rocket de Laval-Moose du Manitoba-
87 - 2019-11-10591Rampage de San Antonio-Moose du Manitoba-
89 - 2019-11-12610Moose du Manitoba-Rampage de San Antonio-
91 - 2019-11-14618Moose du Manitoba-Eagles du Colorado-
93 - 2019-11-16638Marlies de Toronto-Moose du Manitoba-
95 - 2019-11-18646Moose du Manitoba-Wild de l'Iowa-
97 - 2019-11-20660Moose du Manitoba-Rocket de Laval-
99 - 2019-11-22677Moose du Manitoba-Marlies de Toronto-
100 - 2019-11-23679Moose du Manitoba-Bruins de Providence -
103 - 2019-11-26708Admirals de Milwaukee-Moose du Manitoba-
105 - 2019-11-28724Comets d'Utica-Moose du Manitoba-
108 - 2019-12-01742Crunch de Syracuse-Moose du Manitoba-
110 - 2019-12-03756Moose du Manitoba-IceHogs de Rockford-
112 - 2019-12-05762Moose du Manitoba-Checkers de Charlotte-
113 - 2019-12-06766Moose du Manitoba-Monsters de Cleveland-
122 - 2019-12-15791Bruins de Providence -Moose du Manitoba-
123 - 2019-12-16805Rampage de San Antonio-Moose du Manitoba-
126 - 2019-12-19823Admirals de Milwaukee-Moose du Manitoba-
128 - 2019-12-21837Moose du Manitoba-Rampage de San Antonio-
130 - 2019-12-23853Senators de Belleville-Moose du Manitoba-
131 - 2019-12-24859IceHogs de Rockford-Moose du Manitoba-
133 - 2019-12-26876Wolfpack de Hartford-Moose du Manitoba-
136 - 2019-12-29894Barracuda de San José-Moose du Manitoba-
138 - 2019-12-31914IceHogs de Rockford-Moose du Manitoba-
140 - 2020-01-02926Reign d'Ontario-Moose du Manitoba-
142 - 2020-01-04936Moose du Manitoba-Senators de Belleville-
144 - 2020-01-06954Moose du Manitoba-Phantoms de Lehigh Valley-
145 - 2020-01-07960Moose du Manitoba-Americans de Rochester-
147 - 2020-01-09980Moose du Manitoba-Bears de Hershey-
Trade Deadline --- Trades can’t be done after this day is simulated!
149 - 2020-01-11993Bears de Hershey-Moose du Manitoba-
151 - 2020-01-131000Moose du Manitoba-Condors de Bakersfield-
154 - 2020-01-161028Americans de Rochester-Moose du Manitoba-
157 - 2020-01-191048Wolves de Chicago-Moose du Manitoba-
160 - 2020-01-221069Roadrunners de Tucson-Moose du Manitoba-
162 - 2020-01-241081Moose du Manitoba-Condors de Bakersfield-
165 - 2020-01-271102Moose du Manitoba-Heat de Stockton-
166 - 2020-01-281117Moose du Manitoba-Comets d'Utica-
168 - 2020-01-301131Thunderbirds de Springfield-Moose du Manitoba-
171 - 2020-02-021151Wild de l'Iowa-Moose du Manitoba-
173 - 2020-02-041166Moose du Manitoba-Stars du Texas-
175 - 2020-02-061179Moose du Manitoba-Admirals de Milwaukee-
178 - 2020-02-091204Eagles du Colorado-Moose du Manitoba-
180 - 2020-02-111223Wolves de Chicago-Moose du Manitoba-
182 - 2020-02-131229Moose du Manitoba-Heat de Stockton-
184 - 2020-02-151245Moose du Manitoba-Eagles du Colorado-
186 - 2020-02-171257Moose du Manitoba-Roadrunners de Tucson-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
30 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 1,594,333$ 1,594,333$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 136 8,572$ 1,165,792$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1227150000088147-591138000004765-181147000004182-4114881272150030382006142112351680875345327289921010.87%562064.29%014332044.69%20543147.56%19941148.42%481337547161291137
Total Regular Season227150000088147-591138000004765-181147000004182-4114881272150030382006142112351680875345327289921010.87%562064.29%014332044.69%20543147.56%19941148.42%481337547161291137