Admirals de Milwaukee

GP: 20 | W: 16 | L: 4 | OTL: 0 | P: 32
GF: 223 | GA: 98 | PP%: 47.57% | PK%: 71.07%
GM : Nicolas Ganzer | Morale : 40 | Team Overall : 61
Next Games #342 vs Comets d'Utica
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Valeri Nichushkin (R)XX100.007744997078627163446455682561616440620
2Stefan NoesenXX100.008846807475647464416158692555566540620
3Adam HelewkaX100.007974896874768063506260675745456540620
4Jayce HawrylukXX100.008945886767548860576170572555556840610
5Miikka SalomakiXX100.008445927372576661336058712556586540610
6Marko DanoXXX100.007278597678595962505761665858586340610
7Anthony RichardX100.006859896259849063795763646055556540610
8Colin BlackwellX100.007267846467687161765164656154546440600
9Laurent DauphinXX100.007068737268707360756056625347476240600
10Steven SantiniX100.008646877276717059254848802554546240660
11Darren DietzX100.005954627069759561256051765460606540650
12Yannick WeberX100.007543907772597259255048637569705940630
13Alexandre CarrierX100.006963826863829054255041623955555640610
14Jarred TinordiX100.008288696588768449253943654148485540610
15Matt Donovan (R)X100.007475706775717557254752624944445940600
16Keaton Middleton (R)X100.008388706188717847253642644044445340590
Scratches
1Mikhail GrigorenkoX100.005045917369819573676567537058587540640
2Dmitrij JaskinXX100.008946947379567464256357684566676540630
3Frederick GaudreauX100.006541987465538261685257592558586040590
4Rocco GrimaldiX100.006741937161567662546259552555566240590
5Yakov TreninX100.007875846375717557715456645344446140590
6Tanner Jeannot (R)X100.007576726876677153504556625344445840560
7Zach Magwood (R)X100.007568916268677250634847614544445540550
8Mathieu Olivier (R)X100.007076566476707649504746584444445340540
9Matt Irwin (A)X100.008375767377576458255247622565675840620
10Frederic AllardX100.007166816466727853254941613950505440580
11Vladislav Kolvachonok (R)X100.005449776769719452255540674225259540580
12Daniel Brickley (R)X100.007977836377586148254041633944445240570
TEAM AVERAGE100.00746181697267775844535364435252624060
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Connor Ingram (R)100.00646075766675647175733044446840650
2Troy Grosenick100.00646581706566616964633044446440620
Scratches
TEAM AVERAGE100.0064637873667163707068304444664064
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Karl Taylor51435253473547CAN451500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jayce HawrylukAdmirals de Milwaukee (NSH)C/LW205239914560301199356652.53%331215.631110211856000001260.61%3586230115.8200000824
2Adam HelewkaAdmirals de Milwaukee (NSH)LW20265076444125182480275432.50%1133917.008111922531122273070.83%24579054.4700023240
3Stefan NoesenAdmirals de Milwaukee (NSH)LW/RW20293463181205921106356427.36%1336418.219172623721014251028.12%328622063.4601000330
4Darren DietzAdmirals de Milwaukee (NSH)D20193857505010312582323523.17%5350125.061011212977000988300.00%0962022.2701110034
5Miikka SalomakiAdmirals de Milwaukee (NSH)LW/RW20829373520211137163221.62%422211.1201103000021150.00%12378003.3300000000
6Valeri NichushkinAdmirals de Milwaukee (NSH)LW/RW19729364300121638103118.42%1026313.85066326000010010.53%191310002.7400000001
7Anthony RichardAdmirals de Milwaukee (NSH)C201717343480101241122841.46%622211.1400000000291071.84%174116013.0500000010
8Marko DanoAdmirals de Milwaukee (NSH)C/LW/RW20201232344020191046192443.48%101859.28000000110103158.62%29289023.4500004000
9Steven SantiniAdmirals de Milwaukee (NSH)D20424285014039254325269.30%5253026.5215612770004107000.00%0256001.0600000011
10Yannick WeberAdmirals de Milwaukee (NSH)D2051419340017156425347.81%3940220.143361652000772000.00%01137000.9400000000
11Mikhail GrigorenkoAdmirals de Milwaukee (NSH)C911718660283482032.35%223025.664268390006493054.51%255342011.5600000110
12Laurent DauphinAdmirals de Milwaukee (NSH)C/RW2021416121210691991410.53%21025.14000000000000100.00%5243003.1100101000
13Colin BlackwellAdmirals de Milwaukee (NSH)C201141512556102241950.00%9884.4101102000000066.67%45141013.4000001001
14Matt IrwinAdmirals de Milwaukee (NSH)D1421214227925251119111310.53%1825818.50145544000137000.00%0016001.0800023000
15Dmitrij JaskinAdmirals de Milwaukee (NSH)LW/RW11591444023153110916.13%1124822.582468510008610040.00%15138001.1300000002
16Alexandre CarrierAdmirals de Milwaukee (NSH)D2008826155127144100.00%1821510.770000000000000.00%0313000.7400010000
17Jarred TinordiAdmirals de Milwaukee (NSH)D20088261407019122213130.00%1922011.0300000000327000.00%0221000.7300464000
18Matt DonovanAdmirals de Milwaukee (NSH)D20415012076154426.67%71075.380000000019000.00%047000.9300000000
19Otto KoivulaPredators de NashvilleLW/RW31231554354820.00%14715.9701129000000075.00%470001.2500100001
20Keaton MiddletonAdmirals de Milwaukee (NSH)D1402215830652310.00%3634.510000000000000.00%014000.6300213000
Team Total or Average35022335357649750920536625681930650527.23%291492814.0849761251465672244753116459.26%9724182970292.340291319141514
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Troy GrosenickAdmirals de Milwaukee (NSH)1511400.8704.418020059455258000.0000146001
2Connor IngramAdmirals de Milwaukee (NSH)85000.8395.913960039242142000.0000614000
Team Total or Average2316400.8594.9011990098697400000.00002020001


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam HelewkaAdmirals de Milwaukee (NSH)LW241995-07-21No200 Lbs6 ft1NoNoNo2RFAPro & Farm700,000$0$0$NoLink
Alexandre CarrierAdmirals de Milwaukee (NSH)D231996-10-08No174 Lbs5 ft11NoNoNo2RFAPro & Farm688,333$0$0$NoLink
Anthony RichardAdmirals de Milwaukee (NSH)C221996-12-19No163 Lbs5 ft10NoNoNo2ELCPro & Farm688,333$0$0$NoLink
Colin BlackwellAdmirals de Milwaukee (NSH)C261993-03-28No190 Lbs5 ft9NoNoNo2RFAPro & Farm675,000$0$0$NoLink
Connor IngramAdmirals de Milwaukee (NSH)G221997-03-31Yes204 Lbs6 ft1NoNoNo2ELCPro & Farm759,167$0$0$NoLink
Daniel BrickleyAdmirals de Milwaukee (NSH)D241995-03-30Yes205 Lbs6 ft3NoNoNo1RFAPro & Farm925,000$0$0$NoLink
Darren DietzAdmirals de Milwaukee (NSH)D261993-07-17 17:54:57No183 Lbs6 ft5NoNoNo1RFAPro & Farm0$0$No
Dmitrij JaskinAdmirals de Milwaukee (NSH)LW/RW261993-03-22No216 Lbs6 ft2NoNoNo1RFAPro & Farm1,100,000$0$0$NoLink
Frederic AllardAdmirals de Milwaukee (NSH)D211997-12-27No179 Lbs6 ft1NoNoNo3ELCPro & Farm714,166$0$0$NoLink
Frederick GaudreauAdmirals de Milwaukee (NSH)C261993-05-01No179 Lbs6 ft0NoNoNo2RFAPro & Farm666,666$0$0$NoLink
Jarred TinordiAdmirals de Milwaukee (NSH)D271992-02-20No230 Lbs6 ft6NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Jayce HawrylukAdmirals de Milwaukee (NSH)C/LW231996-01-01No186 Lbs5 ft11NoNoNo1RFAPro & Farm925,000$0$0$NoLink
Keaton MiddletonAdmirals de Milwaukee (NSH)D211998-02-10Yes233 Lbs6 ft6NoNoNo1ELCPro & Farm575,000$0$0$NoLink
Laurent DauphinAdmirals de Milwaukee (NSH)C/RW241995-03-27No180 Lbs6 ft1NoNoNo1RFAPro & Farm787,500$0$0$NoLink
Marko DanoAdmirals de Milwaukee (NSH)C/LW/RW241994-11-30No212 Lbs5 ft11NoNoNo1RFAPro & Farm800,000$0$0$NoLink
Mathieu OlivierAdmirals de Milwaukee (NSH)RW221997-02-11Yes209 Lbs6 ft2NoNoNo1ELCPro & Farm575,000$0$0$NoLink
Matt DonovanAdmirals de Milwaukee (NSH)D291990-05-08Yes205 Lbs6 ft1NoNoNo2UFAPro & Farm675,000$0$0$NoLink
Matt IrwinAdmirals de Milwaukee (NSH)D311987-11-29No207 Lbs6 ft1NoNoNo2UFAPro & Farm675,000$0$0$NoLink
Miikka SalomakiAdmirals de Milwaukee (NSH)LW/RW261993-03-08No203 Lbs5 ft11NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Mikhail GrigorenkoAdmirals de Milwaukee (NSH)C251994-05-16 17:52:35No184 Lbs6 ft5NoNoNo1RFAPro & Farm0$0$No
Rocco GrimaldiAdmirals de Milwaukee (NSH)RW261993-02-08No180 Lbs5 ft6NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Stefan NoesenAdmirals de Milwaukee (NSH)LW/RW261993-02-12No205 Lbs6 ft1NoNoNo1RFAPro & Farm1,725,000$0$0$NoLink
Steven SantiniAdmirals de Milwaukee (NSH)D241995-03-07No205 Lbs6 ft2NoNoNo3RFAPro & Farm1,416,666$0$0$NoLink
Tanner JeannotAdmirals de Milwaukee (NSH)LW221997-05-29Yes207 Lbs6 ft2NoNoNo3ELCPro & Farm713,333$0$0$NoLink
Troy GrosenickAdmirals de Milwaukee (NSH)G301989-08-27No185 Lbs6 ft1NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Valeri NichushkinAdmirals de Milwaukee (NSH)LW/RW241995-03-04Yes205 Lbs6 ft4NoNoNo2RFAPro & Farm2,950,000$0$0$NoLink
Vladislav KolvachonokAdmirals de Milwaukee (NSH)D182001-05-26 20:09:47Yes187 Lbs6 ft5NoNoNo1ELCPro & Farm0$0$No
Yakov TreninAdmirals de Milwaukee (NSH)C221997-01-13No201 Lbs6 ft2NoNoNo2ELCPro & Farm730,833$0$0$NoLink
Yannick WeberAdmirals de Milwaukee (NSH)D311988-09-23No200 Lbs5 ft11NoNoNo2UFAPro & Farm675,000$0$0$NoLink
Zach MagwoodAdmirals de Milwaukee (NSH)C211998-04-22Yes190 Lbs5 ft10NoNoNo3ELCPro & Farm753,333$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3024.53197 Lbs6 ft11.67786,444$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Stefan Noesen40122
2Adam HelewkaJayce HawrylukValeri Nichushkin30122
3Miikka SalomakiAnthony RichardMarko Dano20122
4Colin BlackwellLaurent Dauphin10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven SantiniDarren Dietz40122
2Yannick Weber30122
3Alexandre CarrierJarred Tinordi20122
4Matt DonovanKeaton Middleton10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Stefan Noesen60122
2Adam HelewkaJayce HawrylukValeri Nichushkin40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven SantiniDarren Dietz60122
2Yannick Weber40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Stefan NoesenAdam Helewka40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven SantiniDarren Dietz60122
2Yannick Weber40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Steven SantiniDarren Dietz60122
240122Yannick Weber40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Stefan NoesenAdam Helewka40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven SantiniDarren Dietz60122
2Yannick Weber40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Stefan NoesenSteven SantiniDarren Dietz
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Stefan NoesenSteven SantiniDarren Dietz
Extra Forwards
Normal PowerPlayPenalty Kill
Miikka Salomaki, Anthony Richard, Marko DanoMiikka Salomaki, Anthony RichardMarko Dano
Extra Defensemen
Normal PowerPlayPenalty Kill
Alexandre Carrier, Jarred Tinordi, Matt DonovanAlexandre CarrierJarred Tinordi, Matt Donovan
Penalty Shots
, , Stefan Noesen, Adam Helewka, Valeri Nichushkin
Goalie
#1 : Troy Grosenick, #2 : Connor Ingram
Custom OT Lines Forwards
, , Stefan Noesen, Adam Helewka, Valeri Nichushkin, Jayce Hawryluk, Jayce Hawryluk, Miikka Salomaki, Anthony Richard, Marko Dano, Colin Blackwell
Custom OT Lines Defensemen
Steven Santini, Darren Dietz, Yannick Weber, , Alexandre Carrier


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Barracuda de San José220000001981111000000871110000001111041.0001931500010964491723292352651743248308450.00%14471.43%024638963.24%19243044.65%24044853.57%500349435137264139
2Bears de Hershey11000000835110000008350000000000021.00081220001096449138329235265128621198225.00%3166.67%024638963.24%19243044.65%24044853.57%500349435137264139
3Comets d'Utica1010000089-1000000000001010000089-100.000815230010964491423292352651391817163266.67%6266.67%024638963.24%19243044.65%24044853.57%500349435137264139
4Crunch de Syracuse1100000010910000000000011000000109121.0001014240010964491443292352651452319168450.00%7357.14%024638963.24%19243044.65%24044853.57%500349435137264139
5Eagles du Colorado10100000310-70000000000010100000310-700.0003580010964491493292352651431319145120.00%7528.57%024638963.24%19243044.65%24044853.57%500349435137264139
6Griffins de Grand Rapids210010002491510001000871110000001621441.0002435590010964491883292352651843646359666.67%12375.00%024638963.24%19243044.65%24044853.57%500349435137264139
7Gulls de San Diego11000000936110000009360000000000021.000916250010964491293292352651351618237342.86%4175.00%024638963.24%19243044.65%24044853.57%500349435137264139
8Heat de Stockton110000002712611000000271260000000000021.000274269001096449141329235265114714234375.00%70100.00%024638963.24%19243044.65%24044853.57%500349435137264139
9IceHogs de Rockford220000003022822000000302280000000000041.0003054840010964491963292352651653346347342.86%14192.86%224638963.24%19243044.65%24044853.57%500349435137264139
10Moose du Manitoba110000002222011000000222200000000000021.0002231530010964491503292352651166311733100.00%80100.00%024638963.24%19243044.65%24044853.57%500349435137264139
11Reign d'Ontario1010000058-3000000000001010000058-300.00057120010964491393292352651362118308112.50%4175.00%024638963.24%19243044.65%24044853.57%500349435137264139
12Roadrunners de Tucson11000000844000000000001100000084421.000813210010964491343292352651261128154250.00%40100.00%024638963.24%19243044.65%24044853.57%500349435137264139
13Thunderbirds de Springfield11000000972110000009720000000000021.0009162500109644913432923526514723731910330.00%9455.56%024638963.24%19243044.65%24044853.57%500349435137264139
Total20154010002239812512101010001505010085300000734825320.800223362585001096449183032923526516972955373721034947.57%1213571.07%224638963.24%19243044.65%24044853.57%500349435137264139
15Wild de l'Iowa211000001613321100000161330000000000020.50016294500109644917632923526517327253610550.00%10550.00%024638963.24%19243044.65%24044853.57%500349435137264139
16Wolfpack de Hartford1100000013581100000013580000000000021.00013213400109644914832923526514011522211100.00%6350.00%024638963.24%19243044.65%24044853.57%500349435137264139
17Wolves de Chicago1100000012570000000000011000000125721.0001221330010964491503292352651321262238675.00%6266.67%024638963.24%19243044.65%24044853.57%500349435137264139
_Since Last GM Reset20154010002239812512101010001505010085300000734825320.800223362585001096449183032923526516972955373721034947.57%1213571.07%224638963.24%19243044.65%24044853.57%500349435137264139
_Vs Conference1410400000159659487100000112288463300000473710200.71415926442300109644915783292352651453196326261673349.25%842175.00%224638963.24%19243044.65%24044853.57%500349435137264139
_Vs Division642000007127445410000068175110100000310-780.667711191900010964491271329235265119779121101251248.00%391171.79%224638963.24%19243044.65%24044853.57%500349435137264139

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2032W222336258583069729553737200
All Games
GPWLOTWOTL SOWSOLGFGA
20154100022398
Home Games
GPWLOTWOTL SOWSOLGFGA
12101100015050
Visitor Games
GPWLOTWOTL SOWSOLGFGA
85300007348
Last 10 Games
WLOTWOTL SOWSOL
820000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1034947.57%1213571.07%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
329235265110964491
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
24638963.24%19243044.65%24044853.57%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
500349435137264139


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2019-08-179Wild de l'Iowa4Admirals de Milwaukee8WBoxScore
4 - 2019-08-1925Griffins de Grand Rapids7Admirals de Milwaukee8WXBoxScore
7 - 2019-08-2239Barracuda de San José7Admirals de Milwaukee8WBoxScore
9 - 2019-08-2453Bears de Hershey3Admirals de Milwaukee8WBoxScore
11 - 2019-08-2667Admirals de Milwaukee5Reign d'Ontario8LBoxScore
14 - 2019-08-2990Admirals de Milwaukee12Wolves de Chicago5WBoxScore
16 - 2019-08-3198Admirals de Milwaukee8Roadrunners de Tucson4WBoxScore
18 - 2019-09-02117Thunderbirds de Springfield7Admirals de Milwaukee9WBoxScore
21 - 2019-09-05140Gulls de San Diego3Admirals de Milwaukee9WBoxScore
23 - 2019-09-07151Wild de l'Iowa9Admirals de Milwaukee8LBoxScore
25 - 2019-09-09168Admirals de Milwaukee10Crunch de Syracuse9WBoxScore
28 - 2019-09-12184IceHogs de Rockford1Admirals de Milwaukee19WBoxScore
30 - 2019-09-14194Heat de Stockton1Admirals de Milwaukee27WBoxScore
32 - 2019-09-16213Wolfpack de Hartford5Admirals de Milwaukee13WBoxScore
34 - 2019-09-18221Admirals de Milwaukee16Griffins de Grand Rapids2WBoxScore
37 - 2019-09-21241Admirals de Milwaukee3Eagles du Colorado10LBoxScore
39 - 2019-09-23259Admirals de Milwaukee11Barracuda de San José1WBoxScore
42 - 2019-09-26279Admirals de Milwaukee8Comets d'Utica9LBoxScore
46 - 2019-09-30307IceHogs de Rockford1Admirals de Milwaukee11WBoxScore
49 - 2019-10-03326Moose du Manitoba2Admirals de Milwaukee22WBoxScore
51 - 2019-10-05342Comets d'Utica-Admirals de Milwaukee-
53 - 2019-10-07357Admirals de Milwaukee-Rampage de San Antonio-
55 - 2019-10-09369Rampage de San Antonio-Admirals de Milwaukee-
57 - 2019-10-11383Wolves de Chicago-Admirals de Milwaukee-
59 - 2019-10-13394Admirals de Milwaukee-Checkers de Charlotte-
60 - 2019-10-14408Admirals de Milwaukee-Thunderbirds de Springfield-
63 - 2019-10-17429Crunch de Syracuse-Admirals de Milwaukee-
67 - 2019-10-21458Devils de Binghamton-Admirals de Milwaukee-
70 - 2019-10-24479Barracuda de San José-Admirals de Milwaukee-
72 - 2019-10-26489Admirals de Milwaukee-Americans de Rochester-
74 - 2019-10-28508Stars du Texas-Admirals de Milwaukee-
76 - 2019-10-30522Admirals de Milwaukee-Wolfpack de Hartford-
77 - 2019-10-31527Admirals de Milwaukee-Sound Tigers de Bridgeport-
79 - 2019-11-02543Admirals de Milwaukee-Senators de Belleville-
81 - 2019-11-04552Admirals de Milwaukee-Bruins de Providence -
83 - 2019-11-06573Roadrunners de Tucson-Admirals de Milwaukee-
87 - 2019-11-10588Penguins de Wilkes-Barre/Scranton-Admirals de Milwaukee-
88 - 2019-11-11596Admirals de Milwaukee-Penguins de Wilkes-Barre/Scranton-
92 - 2019-11-15626Admirals de Milwaukee-Stars du Texas-
95 - 2019-11-18645Admirals de Milwaukee-Reign d'Ontario-
96 - 2019-11-19653Admirals de Milwaukee-Gulls de San Diego-
98 - 2019-11-21669Bruins de Providence -Admirals de Milwaukee-
100 - 2019-11-23681Admirals de Milwaukee-IceHogs de Rockford-
103 - 2019-11-26708Admirals de Milwaukee-Moose du Manitoba-
105 - 2019-11-28718Admirals de Milwaukee-Condors de Bakersfield-
107 - 2019-11-30733Gulls de San Diego-Admirals de Milwaukee-
109 - 2019-12-02749Americans de Rochester-Admirals de Milwaukee-
118 - 2019-12-11770Marlies de Toronto-Admirals de Milwaukee-
120 - 2019-12-13781Admirals de Milwaukee-Bears de Hershey-
121 - 2019-12-14784Admirals de Milwaukee-Devils de Binghamton-
123 - 2019-12-16800Wolves de Chicago-Admirals de Milwaukee-
126 - 2019-12-19823Admirals de Milwaukee-Moose du Manitoba-
128 - 2019-12-21829Admirals de Milwaukee-Heat de Stockton-
130 - 2019-12-23845Admirals de Milwaukee-Condors de Bakersfield-
132 - 2019-12-25864Admirals de Milwaukee-Comets d'Utica-
135 - 2019-12-28886Sound Tigers de Bridgeport-Admirals de Milwaukee-
137 - 2019-12-30903Admirals de Milwaukee-Rampage de San Antonio-
138 - 2019-12-31909Rampage de San Antonio-Admirals de Milwaukee-
140 - 2020-01-02921Checkers de Charlotte-Admirals de Milwaukee-
143 - 2020-01-05944Admirals de Milwaukee-IceHogs de Rockford-
144 - 2020-01-06951Monsters de Cleveland-Admirals de Milwaukee-
147 - 2020-01-09975Senators de Belleville-Admirals de Milwaukee-
Trade Deadline --- Trades can’t be done after this day is simulated!
149 - 2020-01-11988Heat de Stockton-Admirals de Milwaukee-
151 - 2020-01-131004Eagles du Colorado-Admirals de Milwaukee-
153 - 2020-01-151018Condors de Bakersfield-Admirals de Milwaukee-
154 - 2020-01-161021Admirals de Milwaukee-Wild de l'Iowa-
156 - 2020-01-181037Stars du Texas-Admirals de Milwaukee-
158 - 2020-01-201050Admirals de Milwaukee-Stars du Texas-
161 - 2020-01-231073Admirals de Milwaukee-Rocket de Laval-
163 - 2020-01-251091Admirals de Milwaukee-Marlies de Toronto-
165 - 2020-01-271101Admirals de Milwaukee-Monsters de Cleveland-
166 - 2020-01-281112Admirals de Milwaukee-Wild de l'Iowa-
170 - 2020-02-011143Eagles du Colorado-Admirals de Milwaukee-
172 - 2020-02-031160Phantoms de Lehigh Valley-Admirals de Milwaukee-
173 - 2020-02-041165Admirals de Milwaukee-IceHogs de Rockford-
175 - 2020-02-061179Moose du Manitoba-Admirals de Milwaukee-
177 - 2020-02-081196Reign d'Ontario-Admirals de Milwaukee-
179 - 2020-02-101205Admirals de Milwaukee-Roadrunners de Tucson-
180 - 2020-02-111217Admirals de Milwaukee-Eagles du Colorado-
183 - 2020-02-141240Rocket de Laval-Admirals de Milwaukee-
184 - 2020-02-151249Admirals de Milwaukee-Phantoms de Lehigh Valley-
186 - 2020-02-171265Wild de l'Iowa-Admirals de Milwaukee-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
29 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 2,359,333$ 2,359,333$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 136 12,685$ 1,725,160$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
12015401000223981251210101000150501008530000073482532223362585001096449183032923526516972955373721034947.57%1213571.07%224638963.24%19243044.65%24044853.57%500349435137264139
Total Regular Season2015401000223981251210101000150501008530000073482532223362585001096449183032923526516972955373721034947.57%1213571.07%224638963.24%19243044.65%24044853.57%500349435137264139