Admirals de Milwaukee

GP: 29 | W: 23 | L: 6 | OTL: 0 | P: 46
GF: 278 | GA: 126 | PP%: 46.45% | PK%: 72.08%
GM : | Morale : 40 | Team Overall : 59
Next Games #489 vs Americans de Rochester
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Colin BlackwellX100.008144886467576861637160635957576540610
2Frederick GaudreauX100.007465956465656664806062685958586540610
3Yakov TreninX100.008777876376548161566559662545456440600
4Eeli TolvanenX99.007568906768768060505263646044446540600
5Tommy Novak (R)X100.007366906866676863796557635444446340600
6Michael McCarronXX100.007888536588616259745062665949496140590
7Daniel CarrX100.007343887870567553255059577559596140580
8Anthony RichardX100.006759876259798556704759615655556140580
9Mathieu OlivierX100.007076556476717654504757605444445840560
10Tanner JeannotX100.007176596776616452505347604544445540550
11Josh Wilkins (R)X100.007366886466626550635046604444445540540
12Lukas Craggs (R)X100.007370806370515251504651604844445540530
13Steven SantiniX100.007776797276626648253940643854545340590
14Matt DonovanX100.007575746275748054255241623944445540590
15Frederic AllardX100.007366906166737951254640623850505440580
16Jeremy Davies (R)X100.007066796866646752254941593944445440560
Scratches
1Rem Pitlick (R)X100.007470826570666860755362635944446240580
2Alexandre CarrierX100.006763776863788458255742624055555740600
3Ben HarpurX100.008185726585616451254439683759595440600
TEAM AVERAGE99.95746880667165715649525263494949594058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Pekka Rinne97.00687979897760556962688476796840680
Scratches
1Connor Ingram100.00696480767071727773733044447040670
2Troy Grosenick100.00656986706568637166653044446640630
TEAM AVERAGE99.0067718278716663726769485556684066
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Karl Taylor51435253473547CAN463100,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Eeli TolvanenAdmirals de Milwaukee (NSH)LW29882911754202058352137516341.31%3157819.9631839591062134288257.58%33132310144.0400211844
2Daniel CarrAdmirals de Milwaukee (NSH)LW2948429050203625114418142.11%1349817.201282017741233193251.43%3512817083.6100000644
3Colin BlackwellAdmirals de Milwaukee (NSH)C2127477460140312974214236.49%1341719.875141913611343412061.14%440488053.5500000335
4Rem PitlickAdmirals de Milwaukee (NSH)C25293059504020262066185043.94%530612.2767131232000031061.54%104416063.8500112251
5Alexandre CarrierAdmirals de Milwaukee (NSH)D26550555941540459040365.56%6669926.903172024106022711100100.00%11253001.5700001022
6Anthony RichardAdmirals de Milwaukee (NSH)C292116372640142253255239.62%2032911.353478330002181057.35%684013032.2500000012
7Steven SantiniAdmirals de Milwaukee (NSH)D292293139865034385017354.00%4656619.5313413621456770066.67%91046001.0900235000
8Ben HarpurAdmirals de Milwaukee (NSH)D27130314924416044425230261.92%4550618.7707712650008731040.00%5850001.220091013001
9Rocco GrimaldiPredators de NashvilleRW71415297205529101348.28%117124.47581311301122403136.96%92182023.3900000210
10Yakov TreninAdmirals de Milwaukee (NSH)C23121628272820292638223631.58%1327812.110446182355550154.62%1192513002.0100130001
11Michael McCarronAdmirals de Milwaukee (NSH)C/RW101382113152801792881946.43%214214.204378350000020100.00%8134022.9600538000
12Frederic AllardAdmirals de Milwaukee (NSH)D290212138262028232423200.00%4142814.790111130000190060.00%5531000.9800031000
13Jeremy DaviesAdmirals de Milwaukee (NSH)D291181928322015163613122.78%2830310.4700001101446000.00%1625001.2500013000
14Frederick GaudreauAdmirals de Milwaukee (NSH)C761016840911146542.86%1017124.472685302132411055.56%13534001.8700000121
15Matt DonovanAdmirals de Milwaukee (NSH)D292141627965031344726264.26%3644715.450331131000142100.00%0934000.7100433000
16Tanner JeannotAdmirals de Milwaukee (NSH)LW2941216141268039307716485.19%1237913.09011370000110055.88%347211000.8400718001
17Tommy NovakAdmirals de Milwaukee (NSH)C12505-25512102983217.24%715312.81000001011120045.92%98218000.6500001001
18Yannick WeberPredators de NashvilleD7033112061210610.00%1320128.80011336000037000.00%0012000.3000000000
19Mathieu OlivierAdmirals de Milwaukee (NSH)RW30001315222370.00%03010.00000000000000100.00%241000.0000001000
Team Total or Average400278390668549965535476434104640870426.58%402661216.5372951672067471217294868123656.27%11895953690402.0200312947222223
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Pekka RinneAdmirals de Milwaukee (NSH)1814300.8615.299980088634393300.00001715100
2Connor IngramAdmirals de Milwaukee (NSH)149300.9222.767382134434281300.00001214010
Team Total or Average3223600.8864.211737211221068674600.00002929110


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Alexandre CarrierAdmirals de Milwaukee (NSH)D231996-10-08No174 Lbs5 ft11NoNoNo1Pro & Farm688,333$0$0$NoLink
Anthony RichardAdmirals de Milwaukee (NSH)C231996-12-19No163 Lbs5 ft10NoNoNo1Pro & Farm688,333$0$0$NoLink
Ben HarpurAdmirals de Milwaukee (NSH)D251995-01-12No222 Lbs6 ft6NoNoNo1Pro & Farm725,000$0$0$NoLink
Colin BlackwellAdmirals de Milwaukee (NSH)C271993-03-28No190 Lbs5 ft9NoNoNo1Pro & Farm675,000$0$0$NoLink
Connor IngramAdmirals de Milwaukee (NSH)G231997-03-31No204 Lbs6 ft1NoNoNo1Pro & Farm759,167$0$0$NoLink
Daniel CarrAdmirals de Milwaukee (NSH)LW281991-11-01No193 Lbs6 ft0NoNoNo1Pro & Farm700,000$0$0$NoLink
Eeli TolvanenAdmirals de Milwaukee (NSH)LW211999-04-22No191 Lbs5 ft10NoNoNo2Pro & Farm894,166$0$0$No894,166$Link
Frederic AllardAdmirals de Milwaukee (NSH)D221997-12-27No179 Lbs6 ft1NoNoNo2Pro & Farm714,166$0$0$No714,166$Link
Frederick GaudreauAdmirals de Milwaukee (NSH)C271993-05-01No179 Lbs6 ft0NoNoNo1Pro & Farm666,666$0$0$NoLink
Jeremy DaviesAdmirals de Milwaukee (NSH)D231996-12-04Yes181 Lbs5 ft11NoNoNo1Pro & Farm925,000$0$0$NoLink
Josh WilkinsAdmirals de Milwaukee (NSH)C221997-06-11Yes181 Lbs5 ft11NoNoNo1Pro & Farm925,002$0$0$NoLink
Lukas CraggsAdmirals de Milwaukee (NSH)LW241996-05-16Yes190 Lbs6 ft0NoNoNo1Pro & Farm925,000$0$0$NoLink
Mathieu OlivierAdmirals de Milwaukee (NSH)RW231997-02-11No209 Lbs6 ft2NoNoNo2Pro & Farm730,000$0$0$No730,000$Link
Matt DonovanAdmirals de Milwaukee (NSH)D301990-05-08No205 Lbs6 ft1NoNoNo1Pro & Farm675,000$0$0$NoLink
Michael McCarronAdmirals de Milwaukee (NSH)C/RW251995-03-06No231 Lbs6 ft6NoNoNo1Pro & Farm700,000$0$0$NoLink
Pekka RinneAdmirals de Milwaukee (NSH)G371982-11-02No217 Lbs6 ft5NoNoNo2Pro & Farm5,000,000$0$0$No5,000,000$Link
Rem PitlickAdmirals de Milwaukee (NSH)C231997-04-01Yes196 Lbs5 ft11NoNoNo1Pro & Farm925,001$0$0$NoLink
Steven SantiniAdmirals de Milwaukee (NSH)D251995-03-07No205 Lbs6 ft2NoNoNo2Pro & Farm1,416,667$0$0$No1,416,667$Link
Tanner JeannotAdmirals de Milwaukee (NSH)LW231997-05-29No207 Lbs6 ft2NoNoNo2Pro & Farm713,333$0$0$No713,333$Link
Tommy NovakAdmirals de Milwaukee (NSH)C231997-04-28Yes179 Lbs6 ft1NoNoNo1Pro & Farm817,502$0$0$NoLink
Troy GrosenickAdmirals de Milwaukee (NSH)G301989-08-27No185 Lbs6 ft1NoNoNo1Pro & Farm700,000$0$0$NoLink
Yakov TreninAdmirals de Milwaukee (NSH)C231997-01-13No201 Lbs6 ft2NoNoNo1Pro & Farm730,833$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2225.00195 Lbs6 ft11.27986,099$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Eeli Tolvanen40122
2Daniel CarrAnthony Richard30122
3Tanner Jeannot20122
4Anthony RichardEeli Tolvanen10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Steven SantiniMatt Donovan30122
3Frederic AllardJeremy Davies20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Eeli Tolvanen60122
2Daniel CarrAnthony Richard40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Steven SantiniMatt Donovan40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Eeli TolvanenDaniel Carr40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Steven SantiniMatt Donovan40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Steven SantiniMatt Donovan40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Eeli TolvanenDaniel Carr40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Steven SantiniMatt Donovan40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Eeli Tolvanen
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Eeli Tolvanen
Extra Forwards
Normal PowerPlayPenalty Kill
Tanner Jeannot, , Anthony RichardTanner Jeannot, Anthony Richard
Extra Defensemen
Normal PowerPlayPenalty Kill
Frederic Allard, Jeremy Davies, Steven SantiniFrederic AllardJeremy Davies, Steven Santini
Penalty Shots
, , Eeli Tolvanen, Daniel Carr,
Goalie
#1 : , #2 : Pekka Rinne
Custom OT Lines Forwards
, , Eeli Tolvanen, Daniel Carr, , Anthony Richard, Anthony Richard, Tanner Jeannot, , ,
Custom OT Lines Defensemen
, , Steven Santini, Matt Donovan, Frederic Allard


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Barracuda de San José321000001513222000000151141010000002-240.6671525400011975840923713133850118391335815320.00%13469.23%029254753.38%31362849.84%30063347.39%678454655217405209
2Bears de Hershey1100000011471100000011470000000000021.00011172800119758403837131338503415451810440.00%5180.00%129254753.38%31362849.84%30063347.39%678454655217405209
3Checkers de Charlotte1100000010550000000000011000000105521.0001017270011975840463713133850411323195480.00%40100.00%029254753.38%31362849.84%30063347.39%678454655217405209
4Comets d'Utica22000000332311100000015114110000001811741.0003354870011975840733713133850673156268675.00%80100.00%229254753.38%31362849.84%30063347.39%678454655217405209
5Crunch de Syracuse20200000624-1810100000412-810100000212-1000.000691500119758409537131338507939763011327.27%8450.00%029254753.38%31362849.84%30063347.39%678454655217405209
6Devils de Binghamton1100000011561100000011560000000000021.0001116270011975840353713133850441221167457.14%3166.67%029254753.38%31362849.84%30063347.39%678454655217405209
7Eagles du Colorado11000000514000000000001100000051421.0005813001197584025371313385023823192150.00%9188.89%129254753.38%31362849.84%30063347.39%678454655217405209
8Griffins de Grand Rapids2200000017413110000008351100000091841.00017254200119758406537131338506523344715426.67%12191.67%129254753.38%31362849.84%30063347.39%678454655217405209
9Gulls de San Diego11000000853110000008530000000000021.0008122000119758403637131338504511411033100.00%8187.50%029254753.38%31362849.84%30063347.39%678454655217405209
10Heat de Stockton110000002752211000000275220000000000021.00027386500119758404837131338503922501210770.00%5260.00%029254753.38%31362849.84%30063347.39%678454655217405209
11IceHogs de Rockford220000003162522000000316250000000000041.0003142730111975840873713133850713495268225.00%10370.00%429254753.38%31362849.84%30063347.39%678454655217405209
12Moose du Manitoba11000000615110000006150000000000021.00069150011975840283713133850371712217342.86%6183.33%029254753.38%31362849.84%30063347.39%678454655217405209
13Rampage de San Antonio211000002571811000000201191010000056-120.5002535600011975840563713133850744477392150.00%16475.00%129254753.38%31362849.84%30063347.39%678454655217405209
14Reign d'Ontario11000000761000000000001100000076121.0007132000119758403237131338502912351911545.45%5340.00%129254753.38%31362849.84%30063347.39%678454655217405209
15Roadrunners de Tucson1010000025-3000000000001010000025-300.000246001197584029371313385043114219200.00%6266.67%029254753.38%31362849.84%30063347.39%678454655217405209
16Silvers Knights de Henderson2200000025718110000001421211000000115641.0002538630011975840803713133850743870339777.78%15660.00%029254753.38%31362849.84%30063347.39%678454655217405209
17Thunderbirds de Springfield211000001114-3110000009541010000029-720.500111526001197584084371313385094271093314642.86%7357.14%029254753.38%31362849.84%30063347.39%678454655217405209
Total2923600000278126152181710000020773134116500000715318460.793278421699011197584010693713133850107242710154931557246.45%1544372.08%1229254753.38%31362849.84%30063347.39%678454655217405209
19Wild de l'Iowa220000001710722000000171070000000000041.00017274400119758408237131338506917553112541.67%10640.00%129254753.38%31362849.84%30063347.39%678454655217405209
20Wolf Pack de Hartford1100000011291100000011290000000000021.00011172800119758403837131338502614181744100.00%40100.00%029254753.38%31362849.84%30063347.39%678454655217405209
_Since Last GM Reset2923600000278126152181710000020773134116500000715318460.793278421699011197584010693713133850107242710154931557246.45%1544372.08%1229254753.38%31362849.84%30063347.39%678454655217405209
_Vs Conference19163000002016813312120000001534211174300000482622320.84220130550601119758406683713133850689284689313894348.31%1113370.27%1029254753.38%31362849.84%30063347.39%678454655217405209
_Vs Division8710000084255966000000741856211000001073140.8758412120501119758402783713133850274120262136311238.71%511570.59%729254753.38%31362849.84%30063347.39%678454655217405209

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2946W227842169910691072427101549301
All Games
GPWLOTWOTL SOWSOLGFGA
292360000278126
Home Games
GPWLOTWOTL SOWSOLGFGA
18171000020773
Visitor Games
GPWLOTWOTL SOWSOLGFGA
116500007153
Last 10 Games
WLOTWOTL SOWSOL
730000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1557246.45%1544372.08%12
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
371313385011975840
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
29254753.38%31362849.84%30063347.39%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
678454655217405209


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2020-04-259Wild de l'Iowa5Admirals de Milwaukee6WBoxScore
4 - 2020-04-2725Griffins de Grand Rapids3Admirals de Milwaukee8WBoxScore
7 - 2020-04-3039Barracuda de San José9Admirals de Milwaukee12WBoxScore
9 - 2020-05-0253Bears de Hershey4Admirals de Milwaukee11WBoxScore
11 - 2020-05-0467Admirals de Milwaukee7Reign d'Ontario6WBoxScore
14 - 2020-05-0790Admirals de Milwaukee11Silvers Knights de Henderson5WBoxScore
16 - 2020-05-0998Admirals de Milwaukee2Roadrunners de Tucson5LBoxScore
18 - 2020-05-11117Thunderbirds de Springfield5Admirals de Milwaukee9WBoxScore
21 - 2020-05-14140Gulls de San Diego5Admirals de Milwaukee8WBoxScore
23 - 2020-05-16151Wild de l'Iowa5Admirals de Milwaukee11WBoxScore
25 - 2020-05-18168Admirals de Milwaukee2Crunch de Syracuse12LBoxScore
28 - 2020-05-21184IceHogs de Rockford6Admirals de Milwaukee13WBoxScore
30 - 2020-05-23194Heat de Stockton5Admirals de Milwaukee27WBoxScore
32 - 2020-05-25213Wolf Pack de Hartford2Admirals de Milwaukee11WBoxScore
34 - 2020-05-27221Admirals de Milwaukee9Griffins de Grand Rapids1WBoxScore
37 - 2020-05-30241Admirals de Milwaukee5Eagles du Colorado1WBoxScore
39 - 2020-06-01259Admirals de Milwaukee0Barracuda de San José2LBoxScore
42 - 2020-06-04279Admirals de Milwaukee18Comets d'Utica1WBoxScore
46 - 2020-06-08307IceHogs de Rockford0Admirals de Milwaukee18WBoxScore
49 - 2020-06-11326Moose du Manitoba1Admirals de Milwaukee6WBoxScore
51 - 2020-06-13342Comets d'Utica1Admirals de Milwaukee15WBoxScore
53 - 2020-06-15357Admirals de Milwaukee5Rampage de San Antonio6LBoxScore
55 - 2020-06-17369Rampage de San Antonio1Admirals de Milwaukee20WBoxScore
57 - 2020-06-19383Silvers Knights de Henderson2Admirals de Milwaukee14WBoxScore
59 - 2020-06-21394Admirals de Milwaukee10Checkers de Charlotte5WBoxScore
60 - 2020-06-22408Admirals de Milwaukee2Thunderbirds de Springfield9LBoxScore
63 - 2020-06-25429Crunch de Syracuse12Admirals de Milwaukee4LBoxScore
67 - 2020-06-29458Devils de Binghamton5Admirals de Milwaukee11WBoxScore
70 - 2020-07-02479Barracuda de San José2Admirals de Milwaukee3WBoxScore
72 - 2020-07-04489Admirals de Milwaukee-Americans de Rochester-
74 - 2020-07-06508Stars du Texas-Admirals de Milwaukee-
76 - 2020-07-08522Admirals de Milwaukee-Wolf Pack de Hartford-
77 - 2020-07-09527Admirals de Milwaukee-Sound Tigers de Bridgeport-
79 - 2020-07-11543Admirals de Milwaukee-Senators de Belleville-
81 - 2020-07-13552Admirals de Milwaukee-Bruins de Providence-
83 - 2020-07-15573Roadrunners de Tucson-Admirals de Milwaukee-
87 - 2020-07-19588Penguins de Wilkes-Barre/Scranton-Admirals de Milwaukee-
88 - 2020-07-20596Admirals de Milwaukee-Penguins de Wilkes-Barre/Scranton-
92 - 2020-07-24626Admirals de Milwaukee-Stars du Texas-
95 - 2020-07-27645Admirals de Milwaukee-Reign d'Ontario-
96 - 2020-07-28653Admirals de Milwaukee-Gulls de San Diego-
98 - 2020-07-30669Bruins de Providence-Admirals de Milwaukee-
100 - 2020-08-01681Admirals de Milwaukee-IceHogs de Rockford-
103 - 2020-08-04708Admirals de Milwaukee-Moose du Manitoba-
105 - 2020-08-06718Admirals de Milwaukee-Condors de Bakersfield-
107 - 2020-08-08733Gulls de San Diego-Admirals de Milwaukee-
109 - 2020-08-10749Americans de Rochester-Admirals de Milwaukee-
118 - 2020-08-19770Marlies de Toronto-Admirals de Milwaukee-
120 - 2020-08-21781Admirals de Milwaukee-Bears de Hershey-
121 - 2020-08-22784Admirals de Milwaukee-Devils de Binghamton-
123 - 2020-08-24800Silvers Knights de Henderson-Admirals de Milwaukee-
126 - 2020-08-27823Admirals de Milwaukee-Moose du Manitoba-
128 - 2020-08-29829Admirals de Milwaukee-Heat de Stockton-
130 - 2020-08-31845Admirals de Milwaukee-Condors de Bakersfield-
132 - 2020-09-02864Admirals de Milwaukee-Comets d'Utica-
135 - 2020-09-05886Sound Tigers de Bridgeport-Admirals de Milwaukee-
137 - 2020-09-07903Admirals de Milwaukee-Rampage de San Antonio-
138 - 2020-09-08909Rampage de San Antonio-Admirals de Milwaukee-
140 - 2020-09-10921Checkers de Charlotte-Admirals de Milwaukee-
143 - 2020-09-13944Admirals de Milwaukee-IceHogs de Rockford-
144 - 2020-09-14951Monsters de Cleveland-Admirals de Milwaukee-
147 - 2020-09-17975Senators de Belleville-Admirals de Milwaukee-
Trade Deadline --- Trades can’t be done after this day is simulated!
149 - 2020-09-19988Heat de Stockton-Admirals de Milwaukee-
151 - 2020-09-211004Eagles du Colorado-Admirals de Milwaukee-
153 - 2020-09-231018Condors de Bakersfield-Admirals de Milwaukee-
154 - 2020-09-241021Admirals de Milwaukee-Wild de l'Iowa-
156 - 2020-09-261037Stars du Texas-Admirals de Milwaukee-
158 - 2020-09-281050Admirals de Milwaukee-Stars du Texas-
161 - 2020-10-011073Admirals de Milwaukee-Rocket de Laval-
163 - 2020-10-031091Admirals de Milwaukee-Marlies de Toronto-
165 - 2020-10-051101Admirals de Milwaukee-Monsters de Cleveland-
166 - 2020-10-061112Admirals de Milwaukee-Wild de l'Iowa-
170 - 2020-10-101143Eagles du Colorado-Admirals de Milwaukee-
172 - 2020-10-121160Phantoms de Lehigh Valley-Admirals de Milwaukee-
173 - 2020-10-131165Admirals de Milwaukee-IceHogs de Rockford-
175 - 2020-10-151179Moose du Manitoba-Admirals de Milwaukee-
177 - 2020-10-171196Reign d'Ontario-Admirals de Milwaukee-
179 - 2020-10-191205Admirals de Milwaukee-Roadrunners de Tucson-
180 - 2020-10-201217Admirals de Milwaukee-Eagles du Colorado-
183 - 2020-10-231240Rocket de Laval-Admirals de Milwaukee-
184 - 2020-10-241249Admirals de Milwaukee-Phantoms de Lehigh Valley-
186 - 2020-10-261265Wild de l'Iowa-Admirals de Milwaukee-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
23 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 2,169,417$ 2,169,417$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 116 11,664$ 1,353,024$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1292360000027812615218171000002077313411650000071531846278421699011197584010693713133850107242710154931557246.45%1544372.08%1229254753.38%31362849.84%30063347.39%678454655217405209
Total Regular Season292360000027812615218171000002077313411650000071531846278421699011197584010693713133850107242710154931557246.45%1544372.08%1229254753.38%31362849.84%30063347.39%678454655217405209