Admirals de Milwaukee

GP: 44 | W: 35 | L: 9 | OTL: 0 | P: 70
GF: 515 | GA: 288 | PP%: 42.18% | PK%: 69.20%
GM : Nicolas Ganzer | Morale : 40 | Team Overall : 61
Next Games #718 vs Condors de Bakersfield
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Mikhail GrigorenkoX99.005045917369819573676567537058587540640
2Michael Rasmussen (R)XXX99.007955867285627374386364642551516740630
3Dmitrij JaskinXX98.008946947379567464256357684566676540630
4Valeri Nichushkin (R)XX100.007744997078627163446455682561616440620
5Stefan NoesenXX99.008846807475647464416158692555566540620
6Otto Koivula (R)XX100.008483876683747762505961695844446640620
7Jayce HawrylukXX100.008945886767548860576170572555556840610
8Miikka SalomakiXX100.008445927372576661336058712556586540610
9Marko DanoXXX100.007278597678595962505761665858586340610
10Anthony RichardX100.006859896259849063795763646055556540610
11Colin BlackwellX100.007267846467687161765164656154546440600
12Laurent DauphinXX100.007068737268707360756056625347476240600
13Steven SantiniX99.008646877276717059254848802554546240660
14Darren DietzX100.005954627069759561256051765460606540650
15Yannick WeberX100.007543907772597259255048637569705940630
16Matt Irwin (A)X100.008375767377576458255247622565675840620
17Alexandre CarrierX100.006963826863829054255041623955555640610
18Jarred TinordiX100.008288696588768449253943654148485540610
19Matt Donovan (R)X100.007475706775717557254752624944445940600
Scratches
1Adam HelewkaX89.077974896874768063506260675745456540620
2Frederick GaudreauX100.006541987465538261685257592558586040590
3Rocco GrimaldiX100.006741937161567662546259552555566240590
4Yakov TreninX100.007875846375717557715456645344446140590
5Tanner Jeannot (R)X100.007576726876677153504556625344445840560
6Zach Magwood (R)X100.007568916268677250634847614544445540550
7Mathieu Olivier (R)X100.007076566476707649504746584444445340540
8Keaton Middleton (R)X100.008388706188717847253642644044445340590
9Frederic AllardX100.007166816466727853254941613950505440580
10Vladislav Kolvachonok (R)X100.005449776769719452255540674225259540580
11Daniel Brickley (R)X100.007977836377586148254041633944445240570
TEAM AVERAGE99.43756282697367775944545464435252624060
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Connor Ingram (R)100.00646075766675647175733044446840650
2Troy Grosenick100.00646581706566616964633044446440620
Scratches
TEAM AVERAGE100.0064637873667163707068304444664064
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Karl Taylor51435253473547CAN451500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jayce HawrylukAdmirals de Milwaukee (NSH)C/LW4411710021710812061312128113255.19%867415.3317213837108000003257.78%848123170226.43000001868
2Adam HelewkaAdmirals de Milwaukee (NSH)LW425210315588552535431646011731.71%2168316.2814183241982134446151.67%6010725054.5300023266
3Stefan NoesenAdmirals de Milwaukee (NSH)LW/RW44745813224220109552468217130.08%4283518.98212243481602136474141.51%53182720163.1601000730
4Otto KoivulaAdmirals de Milwaukee (NSH)LW/RW27395594607345232587266244.83%1740815.1259141358101183057.14%354424064.6100432063
5Miikka SalomakiAdmirals de Milwaukee (NSH)LW/RW442554796020452987426728.74%1645510.3401104000053154.17%247224003.4700000101
6Valeri NichushkinAdmirals de Milwaukee (NSH)LW/RW431859777120242786287220.93%3152712.270883280000133038.10%424933002.9200000002
7Anthony RichardAdmirals de Milwaukee (NSH)C4446247053802127101236945.54%123808.64202320003101169.61%2833815033.6800000020
8Darren DietzAdmirals de Milwaukee (NSH)D23254267675610323193343826.88%6257825.16111122318411211103300.00%01175032.3201110034
9Marko DanoAdmirals de Milwaukee (NSH)C/LW/RW39333265608545322486345438.37%143729.56000000110104160.19%2067120043.4900036012
10Michael RasmussenAdmirals de Milwaukee (NSH)C/LW/RW27332962-1480201996367334.38%1439014.4754912440002211038.60%1149618033.1700000130
11Laurent DauphinAdmirals de Milwaukee (NSH)C/RW4483341242315161954243614.81%52245.1000000000000076.92%134213003.6600102000
12Matt IrwinAdmirals de Milwaukee (NSH)D2853237651244056357645366.58%5760921.7711011211010004105000.00%01349001.2100044010
13Mikhail GrigorenkoAdmirals de Milwaukee (NSH)C152116371514051262134733.87%738325.58771414680006863052.16%416547031.9300000320
14Dmitrij JaskinAdmirals de Milwaukee (NSH)LW/RW19828362740342642181919.05%2343322.80257981011111080055.81%432115001.6600000004
15Alexandre CarrierAdmirals de Milwaukee (NSH)D44529344427533225931358.47%5361814.061121231011242100.00%0644001.1000010000
16Jarred TinordiAdmirals de Milwaukee (NSH)D44230324735721551326136353.28%4257413.07022728101657000.00%0553001.110091420000
17Yannick WeberAdmirals de Milwaukee (NSH)D2762329514023197130418.45%5257621.3545919830117105000.00%01244001.0100000001
18Steven SantiniAdmirals de Milwaukee (NSH)D21425295016041294426269.09%5555926.6216712820004111000.00%0258001.0400000011
19Matt DonovanAdmirals de Milwaukee (NSH)D4410132321495272243252523.26%393878.8000005000116000.00%01130001.1900010000
20Colin BlackwellAdmirals de Milwaukee (NSH)C4413720177581332113440.63%101433.2521329011260066.15%65185012.8000001001
21Keaton MiddletonAdmirals de Milwaukee (NSH)D37213151925112534182714147.41%152857.7200000000122000.00%0522001.05009412000
22Alexander PetrovicPredators de NashvilleD11018003231033.33%22727.400000200006000.00%004000.7300000000
23Rocco GrimaldiAdmirals de Milwaukee (NSH)RW21000000000000.00%020.10000010000000100.00%100000.0000000000
Team Total or Average766547805135296511995357335601832720120329.86%5971013213.2393131224284108678157193535756.83%22039826670662.6702243350323433
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Troy GrosenickAdmirals de Milwaukee (NSH)2016400.8844.0811020075646369200.00001920101
2Connor IngramAdmirals de Milwaukee (NSH)1713100.8644.499360070516299300.00001514000
Team Total or Average3729500.8754.272039001451162668500.00003434101


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Adam HelewkaAdmirals de Milwaukee (NSH)LW241995-07-21No200 Lbs6 ft1NoNoNo2Pro & Farm700,000$0$0$No700,000$Link
Alexandre CarrierAdmirals de Milwaukee (NSH)D231996-10-08No174 Lbs5 ft11NoNoNo2Pro & Farm688,333$0$0$No688,333$Link
Anthony RichardAdmirals de Milwaukee (NSH)C231996-12-19No163 Lbs5 ft10NoNoNo2Pro & Farm688,333$0$0$No688,333$Link
Colin BlackwellAdmirals de Milwaukee (NSH)C261993-03-28No190 Lbs5 ft9NoNoNo2Pro & Farm675,000$0$0$No675,000$Link
Connor IngramAdmirals de Milwaukee (NSH)G221997-03-31Yes204 Lbs6 ft1NoNoNo2Pro & Farm759,167$0$0$No759,167$Link
Daniel BrickleyAdmirals de Milwaukee (NSH)D241995-03-30Yes205 Lbs6 ft3NoNoNo1Pro & Farm925,000$0$0$NoLink
Darren DietzAdmirals de Milwaukee (NSH)D261993-07-17 17:54:57No183 Lbs6 ft5NoNoNo1Pro & Farm0$0$No
Dmitrij JaskinAdmirals de Milwaukee (NSH)LW/RW261993-03-22No216 Lbs6 ft2NoNoNo1Pro & Farm1,100,000$0$0$NoLink
Frederic AllardAdmirals de Milwaukee (NSH)D221997-12-27No179 Lbs6 ft1NoNoNo3Pro & Farm714,166$0$0$No714,166$714,166$Link
Frederick GaudreauAdmirals de Milwaukee (NSH)C261993-05-01No179 Lbs6 ft0NoNoNo2Pro & Farm666,666$0$0$No666,666$Link
Jarred TinordiAdmirals de Milwaukee (NSH)D271992-02-20No230 Lbs6 ft6NoNoNo1Pro & Farm650,000$0$0$NoLink
Jayce HawrylukAdmirals de Milwaukee (NSH)C/LW241996-01-01No186 Lbs5 ft11NoNoNo1Pro & Farm925,000$0$0$NoLink
Keaton MiddletonAdmirals de Milwaukee (NSH)D211998-02-10Yes233 Lbs6 ft6NoNoNo1Pro & Farm575,000$0$0$NoLink
Laurent DauphinAdmirals de Milwaukee (NSH)C/RW241995-03-27No180 Lbs6 ft1NoNoNo1Pro & Farm787,500$0$0$NoLink
Marko DanoAdmirals de Milwaukee (NSH)C/LW/RW251994-11-30No212 Lbs5 ft11NoNoNo1Pro & Farm800,000$0$0$NoLink
Mathieu OlivierAdmirals de Milwaukee (NSH)RW221997-02-11Yes209 Lbs6 ft2NoNoNo1Pro & Farm575,000$0$0$NoLink
Matt DonovanAdmirals de Milwaukee (NSH)D291990-05-08Yes205 Lbs6 ft1NoNoNo2Pro & Farm675,000$0$0$No675,000$Link
Matt IrwinAdmirals de Milwaukee (NSH)D321987-11-29No207 Lbs6 ft1NoNoNo2Pro & Farm675,000$0$0$No675,000$Link
Michael RasmussenAdmirals de Milwaukee (NSH)C/LW/RW201999-04-17Yes220 Lbs6 ft6NoNoNo3Pro & Farm894,166$0$0$No894,166$894,166$Link
Miikka SalomakiAdmirals de Milwaukee (NSH)LW/RW261993-03-08No203 Lbs5 ft11NoNoNo2Pro & Farm750,000$0$0$No750,000$Link
Mikhail GrigorenkoAdmirals de Milwaukee (NSH)C251994-05-16 17:52:35No184 Lbs6 ft5NoNoNo1Pro & Farm0$0$No
Otto KoivulaAdmirals de Milwaukee (NSH)LW/RW211998-10-01Yes220 Lbs6 ft4NoNoNo3Pro & Farm786,666$0$0$No786,666$786,666$Link
Rocco GrimaldiAdmirals de Milwaukee (NSH)RW261993-02-08No180 Lbs5 ft6NoNoNo1Pro & Farm650,000$0$0$NoLink
Stefan NoesenAdmirals de Milwaukee (NSH)LW/RW261993-02-12No205 Lbs6 ft1NoNoNo1Pro & Farm1,725,000$0$0$NoLink
Steven SantiniAdmirals de Milwaukee (NSH)D241995-03-07No205 Lbs6 ft2NoNoNo3Pro & Farm1,416,666$0$0$No1,416,666$1,416,666$Link
Tanner JeannotAdmirals de Milwaukee (NSH)LW221997-05-29Yes207 Lbs6 ft2NoNoNo3Pro & Farm713,333$0$0$No713,333$713,333$Link
Troy GrosenickAdmirals de Milwaukee (NSH)G301989-08-27No185 Lbs6 ft1NoNoNo1Pro & Farm650,000$0$0$NoLink
Valeri NichushkinAdmirals de Milwaukee (NSH)LW/RW241995-03-04Yes205 Lbs6 ft4NoNoNo2Pro & Farm2,950,000$0$0$No2,950,000$Link
Vladislav KolvachonokAdmirals de Milwaukee (NSH)D182001-05-26 20:09:47Yes187 Lbs6 ft5NoNoNo1Pro & Farm0$0$No
Yakov TreninAdmirals de Milwaukee (NSH)C221997-01-13No201 Lbs6 ft2NoNoNo2Pro & Farm730,833$0$0$No730,833$Link
Yannick WeberAdmirals de Milwaukee (NSH)D311988-09-23No200 Lbs5 ft11NoNoNo2Pro & Farm675,000$0$0$No675,000$Link
Zach MagwoodAdmirals de Milwaukee (NSH)C211998-04-22Yes190 Lbs5 ft10NoNoNo3Pro & Farm753,333$0$0$No753,333$753,333$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3224.44198 Lbs6 ft11.75789,818$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Michael RasmussenMikhail GrigorenkoDmitrij Jaskin40122
2Stefan NoesenJayce HawrylukOtto Koivula30122
3Valeri NichushkinAnthony RichardMarko Dano20122
4Miikka SalomakiLaurent DauphinMikhail Grigorenko10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven SantiniDarren Dietz40122
2Yannick WeberMatt Irwin30122
3Jarred TinordiAlexandre Carrier20122
4Matt DonovanSteven Santini10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Michael RasmussenMikhail GrigorenkoDmitrij Jaskin60122
2Stefan NoesenJayce HawrylukOtto Koivula40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven SantiniDarren Dietz60122
2Yannick WeberMatt Irwin40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Mikhail GrigorenkoMichael Rasmussen60122
2Dmitrij JaskinStefan Noesen40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven SantiniDarren Dietz60122
2Yannick WeberMatt Irwin40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Mikhail Grigorenko60122Steven SantiniDarren Dietz60122
2Michael Rasmussen40122Yannick WeberMatt Irwin40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Mikhail GrigorenkoMichael Rasmussen60122
2Dmitrij JaskinStefan Noesen40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven SantiniDarren Dietz60122
2Yannick WeberMatt Irwin40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Michael RasmussenMikhail GrigorenkoDmitrij JaskinSteven SantiniDarren Dietz
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Michael RasmussenMikhail GrigorenkoDmitrij JaskinSteven SantiniDarren Dietz
Extra Forwards
Normal PowerPlayPenalty Kill
Colin Blackwell, Valeri Nichushkin, Anthony RichardColin Blackwell, Valeri NichushkinAnthony Richard
Extra Defensemen
Normal PowerPlayPenalty Kill
Jarred Tinordi, Alexandre Carrier, Matt DonovanJarred TinordiAlexandre Carrier, Matt Donovan
Penalty Shots
Mikhail Grigorenko, Michael Rasmussen, Dmitrij Jaskin, Stefan Noesen, Otto Koivula
Goalie
#1 : Connor Ingram, #2 : Troy Grosenick
Custom OT Lines Forwards
Mikhail Grigorenko, Michael Rasmussen, Dmitrij Jaskin, Stefan Noesen, Otto Koivula, Valeri Nichushkin, Valeri Nichushkin, Jayce Hawryluk, Anthony Richard, Marko Dano, Miikka Salomaki
Custom OT Lines Defensemen
Steven Santini, Darren Dietz, Yannick Weber, Matt Irwin, Jarred Tinordi


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans de Rochester1100000013580000000000011000000135821.0001321340024917095141626576562133131514000.00%50100.00%148181059.38%41389546.15%590112452.49%1095775966300578302
2Barracuda de San José33000000359262200000024816110000001111061.00035559000249170951116626576562110544605312650.00%20480.00%048181059.38%41389546.15%590112452.49%1095775966300578302
3Bears de Hershey11000000835110000008350000000000021.000812200024917095138626576562128621198225.00%3166.67%048181059.38%41389546.15%590112452.49%1095775966300578302
4Bruins de Providence 2110000030246110000002161510100000918-920.50030487800249170951926265765621562360199222.22%10370.00%048181059.38%41389546.15%590112452.49%1095775966300578302
5Checkers de Charlotte11000000817000000000001100000081721.0008101800249170951346265765621321737144125.00%6183.33%148181059.38%41389546.15%590112452.49%1095775966300578302
6Comets d'Utica21100000181351100000010461010000089-120.500183048002491709517662657656216731323713646.15%11372.73%048181059.38%41389546.15%590112452.49%1095775966300578302
7Crunch de Syracuse22000000191451100000095411000000109141.000192948002491709518562657656217541664213753.85%13561.54%048181059.38%41389546.15%590112452.49%1095775966300578302
8Devils de Binghamton1100000010371100000010370000000000021.0001016260024917095134626576562146213714200.00%60100.00%048181059.38%41389546.15%590112452.49%1095775966300578302
9Eagles du Colorado10100000310-70000000000010100000310-700.00035800249170951496265765621431319145120.00%7528.57%048181059.38%41389546.15%590112452.49%1095775966300578302
10Griffins de Grand Rapids210010002491510001000871110000001621441.00024355900249170951886265765621843646359666.67%12375.00%048181059.38%41389546.15%590112452.49%1095775966300578302
11Gulls de San Diego211000001415-11100000093610100000512-720.50014233700249170951616265765621713344318337.50%12650.00%048181059.38%41389546.15%590112452.49%1095775966300578302
12Heat de Stockton110000002712611000000271260000000000021.0002742690024917095141626576562114714234375.00%70100.00%048181059.38%41389546.15%590112452.49%1095775966300578302
13IceHogs de Rockford33000000503472200000030228110000002011961.0005083133002491709511376265765621894861457342.86%19194.74%548181059.38%41389546.15%590112452.49%1095775966300578302
14Moose du Manitoba220000002932611000000222201100000071641.000294372002491709518162657656214523683613969.23%14192.86%048181059.38%41389546.15%590112452.49%1095775966300578302
15Penguins de Wilkes-Barre/Scranton211000003135-4101000001321-8110000001814420.50031467700249170951946265765621672045206466.67%10730.00%048181059.38%41389546.15%590112452.49%1095775966300578302
16Rampage de San Antonio2200000021516110000001046110000001111041.0002140610024917095168626576562169331464512325.00%18194.44%048181059.38%41389546.15%590112452.49%1095775966300578302
17Reign d'Ontario211000002624200000000000211000002624220.500264066002491709519062657656215324343915320.00%7357.14%048181059.38%41389546.15%590112452.49%1095775966300578302
18Roadrunners de Tucson2200000027151211000000191181100000084441.00027406700249170951716265765621552864326350.00%70100.00%048181059.38%41389546.15%590112452.49%1095775966300578302
19Senators de Belleville110000002119200000000000110000002119221.00021355600249170951276265765621401925154250.00%10730.00%048181059.38%41389546.15%590112452.49%1095775966300578302
20Sound Tigers de Bridgeport10100000814-60000000000010100000814-600.0008132100249170951386265765621352325153133.33%550.00%048181059.38%41389546.15%590112452.49%1095775966300578302
21Stars du Texas220000002012811000000321110000001710741.00020345400249170951656265765621843364197571.43%12283.33%048181059.38%41389546.15%590112452.49%1095775966300578302
22Thunderbirds de Springfield2110000014140110000009721010000057-220.500142337002491709518162657656218132993720525.00%17947.06%048181059.38%41389546.15%590112452.49%1095775966300578302
Total44349010005152882272219201000270113157221570000024517570700.79551582813430024917095117656265765621146762812737312118942.18%2638169.20%748181059.38%41389546.15%590112452.49%1095775966300578302
24Wild de l'Iowa211000001613321100000161330000000000020.500162945002491709517662657656217327253610550.00%10550.00%048181059.38%41389546.15%590112452.49%1095775966300578302
25Wolfpack de Hartford22000000221391100000013581100000098141.00022375900249170951936265765621631672355240.00%11372.73%048181059.38%41389546.15%590112452.49%1095775966300578302
26Wolves de Chicago220000002111101100000096311000000125741.000213960002491709518962657656215917944216743.75%11645.45%048181059.38%41389546.15%590112452.49%1095775966300578302
_Since Last GM Reset44349010005152882272219201000270113157221570000024517570700.79551582813430024917095117656265765621146762812737312118942.18%2638169.20%748181059.38%41389546.15%590112452.49%1095775966300578302
_Vs Conference26215000003071341731413100000179561231284000001287850420.80830750381000249170951102062657656218273617254521285744.53%1553776.13%548181059.38%41389546.15%590112452.49%1095775966300578302
_Vs Division121020000013946937610000081235854100000582335200.833139234373002491709514766265765621403177383195542648.15%801581.25%548181059.38%41389546.15%590112452.49%1095775966300578302

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4470W3515828134317651467628127373100
All Games
GPWLOTWOTL SOWSOLGFGA
443491000515288
Home Games
GPWLOTWOTL SOWSOLGFGA
221921000270113
Visitor Games
GPWLOTWOTL SOWSOLGFGA
221570000245175
Last 10 Games
WLOTWOTL SOWSOL
730000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2118942.18%2638169.20%7
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
6265765621249170951
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
48181059.38%41389546.15%590112452.49%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1095775966300578302


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2019-08-179Wild de l'Iowa4Admirals de Milwaukee8WBoxScore
4 - 2019-08-1925Griffins de Grand Rapids7Admirals de Milwaukee8WXBoxScore
7 - 2019-08-2239Barracuda de San José7Admirals de Milwaukee8WBoxScore
9 - 2019-08-2453Bears de Hershey3Admirals de Milwaukee8WBoxScore
11 - 2019-08-2667Admirals de Milwaukee5Reign d'Ontario8LBoxScore
14 - 2019-08-2990Admirals de Milwaukee12Wolves de Chicago5WBoxScore
16 - 2019-08-3198Admirals de Milwaukee8Roadrunners de Tucson4WBoxScore
18 - 2019-09-02117Thunderbirds de Springfield7Admirals de Milwaukee9WBoxScore
21 - 2019-09-05140Gulls de San Diego3Admirals de Milwaukee9WBoxScore
23 - 2019-09-07151Wild de l'Iowa9Admirals de Milwaukee8LBoxScore
25 - 2019-09-09168Admirals de Milwaukee10Crunch de Syracuse9WBoxScore
28 - 2019-09-12184IceHogs de Rockford1Admirals de Milwaukee19WBoxScore
30 - 2019-09-14194Heat de Stockton1Admirals de Milwaukee27WBoxScore
32 - 2019-09-16213Wolfpack de Hartford5Admirals de Milwaukee13WBoxScore
34 - 2019-09-18221Admirals de Milwaukee16Griffins de Grand Rapids2WBoxScore
37 - 2019-09-21241Admirals de Milwaukee3Eagles du Colorado10LBoxScore
39 - 2019-09-23259Admirals de Milwaukee11Barracuda de San José1WBoxScore
42 - 2019-09-26279Admirals de Milwaukee8Comets d'Utica9LBoxScore
46 - 2019-09-30307IceHogs de Rockford1Admirals de Milwaukee11WBoxScore
49 - 2019-10-03326Moose du Manitoba2Admirals de Milwaukee22WBoxScore
51 - 2019-10-05342Comets d'Utica4Admirals de Milwaukee10WBoxScore
53 - 2019-10-07357Admirals de Milwaukee11Rampage de San Antonio1WBoxScore
55 - 2019-10-09369Rampage de San Antonio4Admirals de Milwaukee10WBoxScore
57 - 2019-10-11383Wolves de Chicago6Admirals de Milwaukee9WBoxScore
59 - 2019-10-13394Admirals de Milwaukee8Checkers de Charlotte1WBoxScore
60 - 2019-10-14408Admirals de Milwaukee5Thunderbirds de Springfield7LBoxScore
63 - 2019-10-17429Crunch de Syracuse5Admirals de Milwaukee9WBoxScore
67 - 2019-10-21458Devils de Binghamton3Admirals de Milwaukee10WBoxScore
70 - 2019-10-24479Barracuda de San José1Admirals de Milwaukee16WBoxScore
72 - 2019-10-26489Admirals de Milwaukee13Americans de Rochester5WBoxScore
74 - 2019-10-28508Stars du Texas2Admirals de Milwaukee3WBoxScore
76 - 2019-10-30522Admirals de Milwaukee9Wolfpack de Hartford8WBoxScore
77 - 2019-10-31527Admirals de Milwaukee8Sound Tigers de Bridgeport14LBoxScore
79 - 2019-11-02543Admirals de Milwaukee21Senators de Belleville19WBoxScore
81 - 2019-11-04552Admirals de Milwaukee9Bruins de Providence 18LBoxScore
83 - 2019-11-06573Roadrunners de Tucson11Admirals de Milwaukee19WBoxScore
87 - 2019-11-10588Penguins de Wilkes-Barre/Scranton21Admirals de Milwaukee13LBoxScore
88 - 2019-11-11596Admirals de Milwaukee18Penguins de Wilkes-Barre/Scranton14WBoxScore
92 - 2019-11-15626Admirals de Milwaukee17Stars du Texas10WBoxScore
95 - 2019-11-18645Admirals de Milwaukee21Reign d'Ontario16WBoxScore
96 - 2019-11-19653Admirals de Milwaukee5Gulls de San Diego12LBoxScore
98 - 2019-11-21669Bruins de Providence 6Admirals de Milwaukee21WBoxScore
100 - 2019-11-23681Admirals de Milwaukee20IceHogs de Rockford1WBoxScore
103 - 2019-11-26708Admirals de Milwaukee7Moose du Manitoba1WBoxScore
105 - 2019-11-28718Admirals de Milwaukee-Condors de Bakersfield-
107 - 2019-11-30733Gulls de San Diego-Admirals de Milwaukee-
109 - 2019-12-02749Americans de Rochester-Admirals de Milwaukee-
118 - 2019-12-11770Marlies de Toronto-Admirals de Milwaukee-
120 - 2019-12-13781Admirals de Milwaukee-Bears de Hershey-
121 - 2019-12-14784Admirals de Milwaukee-Devils de Binghamton-
123 - 2019-12-16800Wolves de Chicago-Admirals de Milwaukee-
126 - 2019-12-19823Admirals de Milwaukee-Moose du Manitoba-
128 - 2019-12-21829Admirals de Milwaukee-Heat de Stockton-
130 - 2019-12-23845Admirals de Milwaukee-Condors de Bakersfield-
132 - 2019-12-25864Admirals de Milwaukee-Comets d'Utica-
135 - 2019-12-28886Sound Tigers de Bridgeport-Admirals de Milwaukee-
137 - 2019-12-30903Admirals de Milwaukee-Rampage de San Antonio-
138 - 2019-12-31909Rampage de San Antonio-Admirals de Milwaukee-
140 - 2020-01-02921Checkers de Charlotte-Admirals de Milwaukee-
143 - 2020-01-05944Admirals de Milwaukee-IceHogs de Rockford-
144 - 2020-01-06951Monsters de Cleveland-Admirals de Milwaukee-
147 - 2020-01-09975Senators de Belleville-Admirals de Milwaukee-
Trade Deadline --- Trades can’t be done after this day is simulated!
149 - 2020-01-11988Heat de Stockton-Admirals de Milwaukee-
151 - 2020-01-131004Eagles du Colorado-Admirals de Milwaukee-
153 - 2020-01-151018Condors de Bakersfield-Admirals de Milwaukee-
154 - 2020-01-161021Admirals de Milwaukee-Wild de l'Iowa-
156 - 2020-01-181037Stars du Texas-Admirals de Milwaukee-
158 - 2020-01-201050Admirals de Milwaukee-Stars du Texas-
161 - 2020-01-231073Admirals de Milwaukee-Rocket de Laval-
163 - 2020-01-251091Admirals de Milwaukee-Marlies de Toronto-
165 - 2020-01-271101Admirals de Milwaukee-Monsters de Cleveland-
166 - 2020-01-281112Admirals de Milwaukee-Wild de l'Iowa-
170 - 2020-02-011143Eagles du Colorado-Admirals de Milwaukee-
172 - 2020-02-031160Phantoms de Lehigh Valley-Admirals de Milwaukee-
173 - 2020-02-041165Admirals de Milwaukee-IceHogs de Rockford-
175 - 2020-02-061179Moose du Manitoba-Admirals de Milwaukee-
177 - 2020-02-081196Reign d'Ontario-Admirals de Milwaukee-
179 - 2020-02-101205Admirals de Milwaukee-Roadrunners de Tucson-
180 - 2020-02-111217Admirals de Milwaukee-Eagles du Colorado-
183 - 2020-02-141240Rocket de Laval-Admirals de Milwaukee-
184 - 2020-02-151249Admirals de Milwaukee-Phantoms de Lehigh Valley-
186 - 2020-02-171265Wild de l'Iowa-Admirals de Milwaukee-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
19 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 2,527,417$ 2,527,417$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 82 13,588$ 1,114,216$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1443490100051528822722192010002701131572215700000245175707051582813430024917095117656265765621146762812737312118942.18%2638169.20%748181059.38%41389546.15%590112452.49%1095775966300578302
Total Regular Season443490100051528822722192010002701131572215700000245175707051582813430024917095117656265765621146762812737312118942.18%2638169.20%748181059.38%41389546.15%590112452.49%1095775966300578302